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Lecture 12: Language models



Outline
‣ What is a language model?
‣ Applications of language models 
‣ N-gram and chain rule

- Examples for bigram probabilities 
• Evaluating language models
• Smoothing



Give a word

The student is watching                       



Probabilistic language model
‣ Goal: Compute the probability of a sentence or sequence of words

‣ Probability of an upcoming word

P(W) = P(w1, w2, w3, . . . , wn)

P(wn |w1, w2, w3, . . . , wn−1)



LM applications
‣ Machine translation

‣ Natural language generation

‣ Speech recognition

P(Students from my class are the best |我班上的学⽣是最棒的)
> P(Students from Stanford are the best |我班上的学⽣是最棒的)

P(best | Students from my class are the) > P(average | Students from my class are the)

P(Three students) > P(Tree students)



Language models in daily life



Language models in daily life



Probability of next word

‣ C(Students from my class are the best) is count of the phrase “Students from my 
class are the best”

P(best | Students from my class are the) =
C(Students from my class are the best)

C(Students from my class are the)



Probability of next word
‣ Smarter way to estimate the probability

‣ Chain rule of probability

P(Students from my class are the best)
= P(best | the)P(the | are)P(are | class)P(class | my)P(my | from)P(from | Students)P(Students)

P(w1:n) = P(w1)P(w2 |w1)P(w3 |w1:2) . . . P(wn |w1:n−1)



N-gram

The student is watching                   

Unigram:  “The” 
Bigram:     “The student” 
Trigram:   “The student is” 
4-gram:     “The student is watching”



Bigram model
‣ approximates the probability of a word given all the previous words by using only 

the conditional probability of the preceding word

P(best | Students from my class are the) ≈ P(best | the)



Markov assumption
‣ Assumption: the probability of a word depends only on 

the previous word

‣ Markov model: assume we can predict the probability 
of some future unit without looking too far into the past

P(best | Students from my class are the) ≈ P(best | the)

P(wn |w1:n−1) ≈ P(wn |wn−1)



Generalizing bigram to n-gram
‣ From bigram to n-gram

‣ N = 2: bigram
‣ N = 3: trigram
‣ N = 4: 4-gram
‣ N = 5: 5-gram

P(wn |w1:n−1) ≈ P(wn |wn−N+1:n−1)



Simplest case: unigram

P(w1:n) = P(w1)P(w2)P(w3) . . . P(wn)



Bigram model
‣ Condition on the previous word

P(wi |w1:i−1) ≈ P(wi |wi−1)



Example with a mini-corpus

‣ Maximum-likelihood estimation (MLE): bigram probability

<s> : beginning symbol
</s>: ending symbol



A slightly large example
‣ Bigram counts

‣ Unigram counts

- “I want” occurred 827 times in the document.
- “want want” occurred 0 times.



Bigram probabilities

‣ Other useful probabilities

‣ Calculate probability of sentences like “I want English food”



Evaluating language models

Training set Test set



Perplexity
‣ the inverse probability of the test set, normalized by the number of words

‣ Applying chain rule



Intuition of perplexity 
‣ Intuitively, perplexity can be understood as a measure of uncertainty

‣ What’s the level of uncertainty to predict the next word?
- The current president of CUHK Shenzhen is _______ ?
- ChatGPT is built on top of OpenAI's GPT-3 family of large language _____ ?

‣ Uncertainty level
- Unigram: highest
- Bigram: high
- 5-gram: low



Lower perplexity = better model

https://web.stanford.edu/~jurafsky/slp3/3.pdf

https://www.isca-speech.org/archive_v0/Interspeech_2017/pdfs/0729.PDF



Long tail



The perils of overfitting
‣ N-gram models only work well for word prediction if the test corpus looks like the 

training corpus
- In real world, the inference corpus often doesn’t look like the training

- Robust models that generalize are all we need

- One kind of generalization: Zeros
• Things that doesn’t ever occur in the training set but not in the test set



Zeros
‣ Training set

- … denied the allegations
- … denied the reports
- … denied the claims
- … denied the request

‣ Test set
- … denied the offer
- … denied the loan

P(offer | denied the) = 0

P(loan | denied the) = 0



Zero probability bigrams
‣ Bigram with zero probability 

- On test set

‣ Perplexity: can’t compute because of 1 over 0…

P(wi |w1:i−1) ≈ P(wi |wi−1)



Unseen events
Training data:  The wolf is an endangered species 
Test data:            The wallaby is endangered

https://courses.engr.illinois.edu/cs447/fa2018/Slides/Lecture04.pdf



What can we do?



Dealing with unknown words: Simple solution
‣ Create an unknown word token <UNK>

- Training of <UNK> probabilities 
- Create a fixed lexicon L of size V
- At text normalization phase, any training word not in L changed to <UNK>

‣ During inference
- Use UNK probabilities for any word not in training



Smoothing
‣ To improve the accuracy of our model
‣ To handle data sparsity, out of vocabulary words, words that are absent in the training 

set.
‣ Smoothing techniques

- Laplace smoothing: Also known as add-1 smoothing
- Additive smoothing
- Good-turing smoothing
- Kneser-Ney smoothing
- Katz smoothing
- Church and Gale Smoothing



Laplace Smoothing
‣ Assuming every (seen or unseen) event occurred once more than it did in the training 

data.

PLaplace(wn |wn−1) =
C(wn−1, wn) + 1

C(wn−1) + V



Bigram counts

Original

Smoothed



Intuition of smoothing
‣ When we have sparse statistics:

- P(w | denied the)
• 3 allegations
• 2 reports
• 1 claims
• 1 request

‣ Steal probability mass to generalize better
- P(w | denied the)

• 2.5 allegations
• 1.5 reports
• 0.5 claims
• 0.5 request
• 2 other



Backoff and interpolation
‣ Use less context

- Backoff
• use trigram if you have good evidence,
• otherwise bigram, otherwise unigram

- Interpolation
• Mix unigram, bigram, trigram 



Summary 
‣ Language model

- Compute the probability of a sentence or sequence of words
- Predicting next word

‣ N-gram
- Unigram 
- Bigram 
- Trigram
- Etc 

‣ Evaluating language model: perplexity
‣ Smoothing



Reading
‣ Chapter 3: N-gram Language Models

- https://web.stanford.edu/~jurafsky/slp3/3.pdf

https://web.stanford.edu/~jurafsky/slp3/3.pdf

