Lecture 12: Language models

Zhizheng Wu

Outline

> What is a language model?
> Applications of language models
> N-gram and chain rule
- Examples for bigram probabilities
* Evaluating language models
* Smoothing

Give a word

The student is watching

Probabilistic language model

> Goal: Compute the probability of a sentence or sequence of words
P(W) = Pwi,wy,,ws,...,w,)
> Probability of an upcoming word

Pw, | Wi, Wy, Ws, ..., W, _1)

LM applications

> Machine translation
P(Students from my class are the best | FPF_F 574 s 1))

> P(Students from Stanford are the best | FIF_ 1244 B 1)

> Natural language generation
P(best | Students from my class are the) > P(average | Students from my class are the)

> Speech recognition
P(Three students) > P(Tree students)

Language models in daily life

Google

the chinese university X !;

The Chinese University of Hong Kong (CUHK)

=#==%= Public university in Hong Kong

® The Chinese University of Hong Kong

=2 Jniversity in Shenzhen, China

the chinese university of hong kong ranking

the chinese university of hong kong acceptance rate
the chinese university of hong kong press

the chinese university of hong kong shenzhen ranking

the chinese university of hong kong department of mathematics

Department of Mathematics, The Chinese University of Hong Kong - Room 220, The
Chinese University of Hong Kong (CUHK), Lady Shaw Building, University Ave, Ma Liu
Shui, Hong Kong

the chinese university of hong kong zip code

<= The Chinese University Press

Language models in daily life

Recipients

this is a test email for CSC3160/MDS6002 course

This is a test email on language model applications. | has a typo. can you corret it?

Probability of next word

Students f 1 h
P(best | Students from my class are the) = C(Students from my class are the best)

C(Students from my class are the)

> C(Students from my class are the best) is count of the phrase “Students from my
class are the best’

Probability of next word

> Smarter way to estimate the probability

P(Students from my class are the best)
= P(best|the)P(the|are)P(are|class)P(class | my)P(my | from)P(from | Students)P(Students)

> Chain rule of probability

Pw,.,) = Pw)Pw, | w)Pwy|w;.,)...Pw, |w.,.)

N-gram

The student is watching

Unigram: “The”

Bigram: “The student”

Trigram: “The studentis”

4-gram: “The student is watching”

Bigram model

> approximates the probability of a word given all the previous words by using only
the conditional probability of the preceding word

P(best | Students from my class are the) ~ P(best | the)

Markov assumption

> Assumption: the probability of a word depends only on

the previous word

n of the Squares of Standarg s azrzmel omsrams,

the Deviations]

+oioss | /~ !
/A

POMAITE B CTHXAXD.

| 1.702,3

P(best | Students from my class are the) ~ P(best | the)

P(Wn ‘ Wl:n—l) ~ P(Wn ‘ Wn—l)

> Markov model: assume we can predict the probability
of some future unit without looking too far into the past

Generalizing bigram to n-gram

> From bigram to n-gram

P(Wn ‘ Wl:n—l) ~ P(Wn ‘ Wi—NA I:n—l)

> N =2: bigram
> N = 3: trigram
" N =4: 4-gram
> N =5:5-gram

Simplest case: unigram

P(w,.,) = P(w)P(wy,)P(wz)...P(w,)

e regenerate by simulating an unigram model

=2

Certainly, | can simulate an unigram model to generate a new sentence. Here is an

example:

"Dog cat ball blue happy tree sing boy laugh jump sun"

Bigram model

> Condition on the previous word
P(w;[wy,;_1) = P(w;|w;_;)

g,%l\g regenerate by simulating a bigram model

Sure, here's an example sentence generated using a bigram model:

"The sun is shining brightly, and the birds are singing in the trees."

Example with a mini-corpus

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

<S> : beginning symbol
</s>: ending symbol

> Maximume-likelihood estimation (MLE): bigram probability

P(I|<s>) =% =.67 P(Sam|<s>) = % =.33 P(am|I)
P(</s>|Sam) =7 =0.5 P(Sam|am)= 5 =.5 P(do|I)

W

C(Wn—N+1:n—1 Wn)
C(Wn—N—I—I:n—l)

P(Wn‘wn—N—H:n—l) =

|
W= WIINI

A slightly large example

" Bigram counts

i want to eat chinese food Ilunch spend
i S 827 0 9 0 0 0 2
want 2 0 608 1 6 6 S 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 O 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

o
Unigram counts want to eat chinese food lunch spend

2533 927 2417 746 158 1093 341 278
- Y| want” occurred 827 times in the document.

- “want want” occurred O times.

Bigram probabllltles

want to eat chinese food lunch spend

i 0.002 033 0 0.0036 0 0 0 0.00079
want 0.0022 O 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0O 0.0017 0.28 0.00083 0O 0.0025 0.087

eat 0 0 0.0027 0O 0.021 0.0027 0.056 O

chinese 0.0063 0O 0 0 0 0.52 0.0063 0O

food 0.014 0 0014 O 0.00092 0.0037 0O 0

lunch 0.0059 0O 0 0 0 0.0029 0 0

spend 0.0036 0 0.0036 O 0 0 0 0

> Other useful probabilities P(i|<s>) =0.25 P(english|want) = 0.0011

P(food|english) =0.5 P(</s>|food)=0.68

" Calculate probability of sentences like “I want English food”
P(<s> i want english food </s>)

= P(i|<s>)P(want|i)P(english|want)
P(food|english)P(</s>|food)

25 x .33 x.0011 x 0.5 x0.68

= .000031

Evaluating language models

Tralning set

Perplexity

" the inverse probability of the test set, normalized by the number of words

perplexity(W) = P(wiw;... wN)—zlv

1
P(wiwy...wy)

N

"> Applying chain rule

| 1
perplexity(W) = &HP(w-le--W‘—l)

=1

Intuition of perplexity

" Intuitively, perplexity can be understood as a measure of uncertainty

> What’s the level of uncertainty to predict the next word?
= The current president of CUHK Shenzhen is ?
= ChatGPT is built on top of OpenAl's GPT-3 family of large language

> Uncertainty level
= Unigram: highest
= Bigram: high
= 5-gram: low

Lower perplexity = better model

Unigram Bigram Trigram
Perplexity 962 170 109

https:/web.stanford.edu/~jurafsky/slp3/3.pdf
https:/www.isca-speech.org/archive_vo/Interspeech_2017/pdfs/0729.PDF

Model PPL
Trigram-1 303.2
Trigram-all 112.2
Sgram-1 281.0
S-gram-all 73.7
ME-1 286.5
ME-all 68.8
FFNN-all 83.0
RNN-1 211.1
RNN-all 45.7
RNNME-1 196.3
RNNME-3 136.0
RNNME-6 109.7
RNNME-9 107.5
RNNME-12 103.1
RNNME-15 91.3
RNNME-18 106.9
RNNME-21 78.9
L-1-512-512-0.1 63.2
L-1-1024-512-0.1 54.5
L-1-2048-512-0.1 45.3
[L-1-8192-2048-0.5 35.9
L-1-8192-2048-0 37.5
L-2-2048-512-0.1 39.8
L-2-4096-1024-0.1 33.6
Human (estimated) 12.0

Long talil

B Fole. *

. d - 7'y
J. ‘E

PN 10 *QYTOYKA kl 130' cor:FE}
1A M‘RNA e BAR

-
. 4

. KAAAO €

. | ‘ . | _ o & ; i b a0 g YN _';'-:.:n-.- oh .
| ; & I >
e Q&B@ NA

The perils of overfitting

> N-gram models only work well for word prediction if the test corpus looks like the
training corpus

= In real world, the inference corpus often doesn’t look like the training
= Robust models that generalize are all we need

= One kind of generalization: Zeros

* Things that doesn’t ever occur in the training set but not in the test set

Zeros

" Training set " Test set
= ... denied the allegations = ... denied the offer
= ... denied the reports = ... denied the loan

= ... denied the claims
= ... denied the request

P(offer|denied the) = 0

P(loan |denied the) =0

Zero probability bigrams

" Bigram with zero probability
- On test set P(Wi ‘ Wl:i—l) ~ P(Wi ‘ Wi—l)

" Perplexity: can’t compute because of 1 over O...

perplexity (W)

N

N |
\ ll—[P(wilwy...wi_1)

1

Unseen events

Training data: The wolf is an endangered species
Test data: The wallaby is endangered

Unigram Bigram Trigram
P(the) P(the | <s>) P(the | <s>)
x P(wallaby) x P(wallaby | the) x P(wallaby | the, <s>)
X P(1s) x P(1s | wallaby) x P(1s | wallaby, the)

x P(endangered)| X P(endangered | 1s) x P(endangered | is, wallaby)

-Case 1: P(wallaby), P(wallaby | the), P(wallaby | the, <s>):
What is the probability of an unknown word (in any context)?

-Case 2: P(endangered | is)
What is the probability of a known word in a known context,
If that word hasn’t been seen in that context?

-Case 3: P(is | wallaby) P(is | wallaby, the) P(endangered | is, wallaby):
What is the probability of a known word in an unseen context?

https:/courses.engr.illinois.edu/cs447/fa2018/Slides/Lectureo4.pdf

What can we do?

Dealing with unknown words: Simple solution

> Create an unknown word token <UNK>
= Training of <UNK> probabilities
- Create a fixed lexicon L of size V
= At text normalization phase, any training word not in L changed to <UNK>

" During inference
= Use UNK probabilities for any word not in training

Smoothing

" To improve the accuracy of our model

"> To handle data sparsity, out of vocabulary words, words that are absent in the training
set.

> Smoothing techniques

= Laplace smoothing: Also known as add-1 smoothing
= Additive smoothing

= Good-turing smoothing

= Kneser-Ney smoothing

= Katz smoothing

= Church and Gale Smoothing

Laplace Smoothing

> Assuming every (seen or unseen) event occurred once more than it did in the training
data.

P - Cw,_,w,) + 1
Laplace™n!Vn-1) = C(w,_)+V

Bigram counts

i want to eat chinese food lunch spend
i S 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
Original eat 0 O 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 O 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
Smoothed eat 11 3 117 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Intuition of smoothing

> When we have sparse statistics:
= P(w | denied the)
* 3 allegations
* 2 reports
* 1 claims
* 1 request
> Steal probability mass to generalize better
= P(w | denied the)
* 2.5 allegations
* 1.5 reports
* 0.5 claims
* 0.5 request
* 2 other

()
x =
S c O
= O 5
@™ & O
(Vs
s] o
e
c || VB - O
O
SIS mmEm § < 8
g+ 8 = © O
-

Backoff and interpolation

> Use less context

- Backoff

® use trigram if you have good evidence,
* otherwise bigram, otherwise unigram

= Interpolation

* Mix unigram, bigram, trigram

Summary

>

Language model

= Compute the probability of a sentence or sequence of words
= Predicting next word

N-gram

= Unigram

= Bigram

= Trigram

= Etc

Evaluating language model: perplexity

Smoothing

Reading

> Chapter 3: N-gram Language Models
= https://web.stanford.edu/~jurafsky/slp3/3.pdf

https://web.stanford.edu/~jurafsky/slp3/3.pdf

