Lecture 14: Text-to-Speech Synthesis

Zhizheng Wu

Agenda

> Recap

> Applications

> Overview of text to speech
> Frontend

> Acoustic model

> Waveform generator

" Tools and readings

Text normalization

> Normalizing text into standard format

> Every NLP task requires text normalization
= Tokenizing (segmenting) words
= Normalizing word formats
= Segmenting sentences

Grapheme to phoneme

> Grapheme: a letter or a group of letters that represent a single phoneme

> Phoneme: the smallest unit of sound that can distinguish one word from another in a
particular language

> when a child says the sound /t/ this is a phoneme, but when they write the letter 't' this
IS a grapheme.

Grapheme tomato

Phoneme /to m el.tou/

Part-of-speech tagging is a disambiguation process

Verb or Noun? Verb or Noun?

She is reading a book about Reading

Dense Matrix

Embedding representations

Sparse Matrix

-

-

2 |3112 |9 |7 |34|22|11 |5
11 92.4 .3 2 |2 |3 |3 ’2 1
3 |9 .13.8 21 |17 |4 | 2 .1 4
8 32.1 .2 34 |18 |7 78'10 7
9 22.3 .9 8 |71 |12 22‘17 3
13 21.21.9 2 |47 |1 81'21 9
21 12.53.12 91 |24 |81 |8 .91 2
6118 .33.82 19187 |16 | 3 .1 95
54 4 .78.24 18|11 |4 |2 .99 S |
13 22.32'42 9 |15 |9 22.1 21

Content

Speech representation

The end-to-end problem we want to solve

text —

Author of the...

Text-to-Speech

—

_ --“J,J‘”‘m,'r“‘“H‘
i e

\,HM
il

i
i

waveform

,‘IMJHl"I\Hl‘”mll“”i‘\‘l“u‘l““ s poorpre ot H“H
R i

The two-stage pipeline

Language
dependent
Waveform
text = Frontend >
generator
linquistic
Author of the.. specification
Auggor SE JE; c oo

/N

sil ao th er

/\

1&ah

f dh ax ...

—

Lttt e,
PNGRRE MWL O Hlm Il

waveform

,.mnl\IIMI}IHHIH‘ ‘IMM‘M‘JHI [T ,,v__,,‘,.nlllll”l
(A i

The three-stage pipeline

Acoustic Waveform

— —

model generator

-3 Front end =

liInguistic
specification

NN of DT
Author of the... Author of the ...

ANVAT A

sil ao th er dh ax J..

text acoustic features waverform

AR) T
R A it

Frontend

Front end

lext

[Front end
4) N\ [N\ [)
))
tokenize 05 TS hrase iINntonation
tag Oreaks
_ J J J

J

13

17

individually learned
from labelled data

liInguistic
specification

Front end

> Language dependent: Each language has its unique characteristics

Hello world T AR 4

Front end

> Handle text normalization

- $123 -> one hundred and twenty three dollars

Front end

> Handle pronunciation of words in different context

- Read
= record

Classic front end

> A chain of processes

> Each process is performed by a model

> These models are independently trained in a supervised fashion on annotated data

text

e

g
Front end
4) 4 N\ [N\ [)
D) D)
tokenize 05 LTS WasSe iINntonation
tag oreaks
_ J _ J J

~

J

individually learned
from labelled data

lInguistic
specification

Neural front end

> Learn by a neural network

text

Neural Net

18

lInguistic
specification

Linguistic features vs acoustic features

(coustc featured) EEEEEEEEEEEEEEEEEE

Acoustic model

20

Acoustic model - Decision tree

" Decision tree to group HMM states, which model acoustic feature distribution

L=voiced ?

N

R=consonant ? [L=stop ?

SN Y

Phrase final ?] Syllable stressed ?]

Y Y
M /N\

Acoustic model: DNN

> Feedforward neural network

Input
Linguistic features

output
acoustic features

do the iﬂﬂovements come from?." In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5505-5509. IEEE, 2016

Acoustic model - RNN based

> Tacotron2: A sequence-to-sequence model based on Recurrent Neural Networks

Waveform samples

4
WaveNet Mol

mel spectrogram

S Conv Layer Post-Net
N 4
Bi-directional LSTM Linear Projection
4 4 |)
S Location A
o et y Sensitive D l— 2 LSTM Layers O
3 Attention i

Character Embedding \ / 2 Layer Pre-Net
gososoosn ——

Shen, Jonathan, et al. "Natural tts synthesis by conditioning wavenet on mel spectrogram predictions." 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2018.

23

Acoustic model - RNN based

> Attention

- 0.8

Encoder timestep

Decoder timestep

0.6

0.4

0.2

0.0

Acoustic model - Transformer based

"> FastSpeech2: parallel generation and not depending on the location attention

Positional
Encoding

Pitch Predictor
uration
Positional
Encoding Duration Predictor
Phoneme Embedding
Phoneme
(a) FastSpeech 2 (b) Variance adaptor

Ren, Yi, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. "Fastspeech 2: Fast and high-quality end-to-end text to speech." arXiv preprint arXiv:2006.04558 (2020).

25

Waveform generator

26

Waveform generator: Waveform concatenation

27

Classical unit selection (drawn here with phone units) - target anc

JoIn Costs

Nergy
Dectrum

Stress
Syllab

Worc

Phonetic context

e position
posItion

Phrase posrtion

28

B arctic_a0212_pau-s.wav

B arctic_b0448_pau-s.wav

B arctic_b0516_s-ay.wav

B arctic_b0465_s-ay.wav

B arctic_b0452_ay-m.wav

Hl'.,”““

I
\\

B arctic_a0212_m-ax.wav

B arctic_b0429_m-ax.wav

B arctic_b0382_m-ax.wav

B arctic_a0212_ax-n.wav

B arctic_b0429_ax-n.wav

VPR Y 'S AR

B arctic_b0382_ax-n.wav

B arctic_b0516_ax-n.wav

r"}'"\\ﬁ’".

B arctic_a0212_n-pau.wav

B arctic_b0516_n-pau.wav

29

B arctic_a0212_pau-s.wav

[arctic_b0448_pau-s.wav

B arctic_b0516_s-ay.wav

B arctic_b0465_s-ay.wav

B arctic_b0452_ay-m.wav

B arctic_b0438_ay-m.wav

e

PPV RTRYY T

B arctic_a0212_m-ax.wav

B ~tic_b0429_m-ax.wav

(]
vold AN
|

\,' | "" I\
'] |
.

B arctic_b0382_m-ax.wav

B arctic_a0212_ax-n.wav

B arctic_b0429_ax-n.wav

B arctic_b0382_ax-n.wav

b, ¢
iy | arctic_b0516_ax-n.wav
]

B arctic_a0212_n-pau.wav

B arctic_b0516_n-pau.wav

30

B arctic_a0212_pau-s.wav

[arctic_b0448_pau-s.wav

B arctic_b0516_s-ay.wav

B arctic_b0465_s-ay.wav

B arctic_b0452_ay-m.wav

'4
arctic_b0438_ay-m.wav

,\HHH’\\

Mfﬁ”;’«p_

“Simon”’

B arctic_a0212_m-ax.wav

B arctic_b0429_m-ax.wav

H l' “HH

| ‘,\‘ A ‘r‘ ‘ l . ‘ ‘ l ‘ ‘l \ ‘1 \ \1

kl~w'“

B arctic_b0382_m-ax.wav

) ‘
f (Ip,\rlf

B arctic_a0212_ax-n.wav

arctic_b0429_ax-n.wav

LML)

arctic_b0382_ax-n.wav

arctic_b0516_ax-n.wav

B arctic_a0212_n-pau.wav

v'~ My arctic_b0516_n-pau.wav

31

B arctic_a0212_pau-s.wav

[arctic_b0448_pau-s.wav

B arctic_b0516_s-ay.wav

B arctic_b0465_s-ay.wav

B arctic_b0452_ay-m.wav

B arctic_b0438_ay-m.wav

H ’ W\ 'Hl'”m

PPV RTRYY T

L}
I

B arctic_a0212_m-ax.wav

B ctic_b0429_m-ax.wav

B arctic_b0382_m-ax.wav

B arctic_a0212_ax-n.wav

B arctic_b0429_ax-n.wav

»'fvf‘fprru

B arctic_b0382_ax-n.wav

B arctic_b0516_ax-n.wav

B arctic_a0212_n-pau.wav

B arctic_b0516_n-pau.wav

32

Waveform generator: Vocoder

acoustic features N

Waveform

33

(RN
[T

L
1

— /3VETOrM
generator

e~
e ‘UHHH‘! R HREVEE RO TR VIV

Vocoder - Signal processing based

> WORLD vocoder

Aperiodic
Magnitude
el Minimum Aperiodic

Phase Complex

Construction Spectrum

Aperiodic
impulse Synthesised

Minimum Periodic
Phase Impulse

Periodic Nelelattatletile] s Complex Response

Magnitude G
Spectrum pectrum 34

Periodic

Vocoder: Autoregressive

> WaveNet: autoregressive model with dilated causal convolution

© © © 060000 00000 00,0

Output
Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input

35

Vocoder: Autoregressive

> WaveRNN: autoregressive model with RNN

g —_l‘-..l..- —L-L el o [e] [2] [5e
O S s
o| [© 3 O 8| |o 8] lo| o] |X®
L] —J | Shas T L S =
Ll |
split > concat [«
X t
o) Y
- =
© 0 =)
- X = 7))
7 3 : S
@ m 2
. = T

:w‘u”‘: Mml «|||H|||'IIH”
Melspectrogram peech

Vocoder: Flow based

> AF (autoregressive flow) and IAF (inverse autoregressive flow)
- Parallel inference of IAF student
= Parallel training of AF teacher

WaveNet Teacher [0 0 o0 o0 © Teacher Output
P(x;|x<;)
O O O O O
Linguistic features -----»
O O O O
AAA 7
T T T T T Generated Samples
CT)OOOOOOOTOOOOOOOCT) $¢=g(zi\z<z~)
‘ Student Output
WaveNet Student O O O OO0 OO O O O O O O O O
P(x;|z<;)
O O O O O O O
Linguistic features -----+» O O O O O

| T T 37 T T T Input noise
©O OO0 0O OO0 O O O0OO0OO0OO0O 0 0 Zi

Vocoder: GAN base

> MelGAN: Generator + Discriminator

Mel Spectogram

|

Conv Layer

l Input sequence
Upsampling [8x]
Layer A N)
2X l v
Dilated
[Residual stack } 3X C()llv‘lbl()ck
| P—
Upsampling [2x] \‘\\ > / Y,
Layer v
aX l Output sequence

[Residual stack J

l

Conv Layer

l

Raw Waveform

(a) Generator

. . Discriminator
Raw Waveform —
Block |

|

Ave Pool " Discriminator
ST | Block ,

|

Ave Pool Discriminator
Avg Poo | Block _,_’

Raw Waveform

T Conv Layer
(downsampled) .

l

Layer

|

Conv Layer

l

Conv Layer

(b) Discriminator

38

Downsampling [4x]

—_— >

—_—

Feature maps
+ output

Feature maps
+ output

Feature maps
+ output

Feature map

4x Feature maps

Feature map

Output

Vocoder: Diffusion based

> Diffusion probabilistic model
= Forward process: diffusion
= Reverse process: denoising

W\/M Wm/\ . Forward diffusion: Data -> Noise .

J; a: T £L &Zr
Gdata(T0) (@1 20) (z2]z1) diffusion process

@ >@/;@

: I'GVCI'SC Process :
po(zolz1) . e (#1]22) Po(Tr-1|T7) Patent (T7)

WNW/\
- Reverse diffusion (neural network): Noise -> Data -

q(xr|rr—_1)

39

Applications

L R
LA ER R R R R
TR R R A R L
CARRR R R RN R r

R
CIRRR AR AR R R
.

3:52

Alexa, how can |
geta COVID-19

t at home?
CQOSV\D-‘\Q Helpful

Hints

40

Applications

AUDIOBOOKS

L) AR

BIEFM B A

15:01 / 38:32

MABL RIEEB P

Sim0E

amap.com

W {1 FIALEZREE

Applications

Tools

> TTS open-source
= https://github.com/open-mmiab/Amphion

= https://github.com/coqui-ai/TTS

= https://github.com/espnet/espnet

43

https://github.com/open-mmlab/Amphion
https://github.com/coqui-ai/TTS
https://github.com/espnet/espnet

Amphion: Generating audio, music and speech

I T

Singing voice
conversion (SVC)

Descriptive |
foxt =P Text to audio (TTA) | ‘."l"'—V
N

Text Text to speech (TTS) || ||||‘||| Voice conversion
(VO)

Text o . " : .

inging voice | | ccent conversion

T HUDHIR
—p synthesis (SVS) ‘ I‘ I I‘ 1= (AC) ‘
note
44

T T

Yocoder

¢ (Objective comparison with existing toolkits. Eval on dev-test set of LibriTTS

Sampling

System PESQ(T) | FORMSE(!) Rate Data Steps GitHub
Ambhi LibriTTS
mp lon 3.55 1601.2 24khz LJSpeech 1.56M https://github.com/open-mmlab/Amphion
(HiIFIGAN)
VCTK
LibriTTS
HiFIGAN 3.4 229.35 22.05khz LJSpeech 2.5M https://github.com/jik876/hifi-gan
VCTK
ESPNet 3.55 199.17 24khz LibriTTS 2.5M | et avashl

ParallelWaveGAN

435

https://github.com/open-mmlab/Amphion
https://github.com/jik876/hifi-gan
https://github.com/kan-bayashi/ParallelWaveGAN

TTS: Objective and subjective results

e Training data: LJSpeech

Speaker

System CER(]) | WER(]) | FAD(]) Similarity 1

MOS

Amphion

(VITS)

Coqui/TTS
(VITS) 0.06 0.12 0.54 0.98 3.69 +0.1

SpeechBrain
(Fastspeech2)

0.06 0.11 1.71 0.94 3.54 £0.11

Tortoise-tts
(Diffusion-based model) | V-0 0.09 1.90 0.55 3.61 £0.11

ESPNet
(VITS) 0.07 0.11 1.28 0.99 3.57+0.11

TTS: FastSpeech?2

"> Recipe
= https://github.com/open-mmlab/Amphion/tree/main/egs/tts/FastSpeech?2
FastSpeech2 Recipe

In this recipe, we will show how to train FastSpeech2 using Amphion's infrastructure. FastSpeech2 is a non-autoregressive TTS architecture
that utilizes feed-forward Transformer blocks.

There are four stages in total:

1. Data preparation
2. Features extraction
3. Training

4. Inference

NOTE: You need to run every command of this recipe in the Amphion root path:

cd Amphion

1. Data Preparation

Dataset Download

You can use the commonly used TTS dataset to train TTS model, e.g., LIJSpeech, VCTK, LibriTTS, etc. We strongly recommend you use
LJSpeech to train TTS model for the first time. How to download dataset is detailed here.

https://github.com/open-mmlab/Amphion/tree/main/egs/tts/FastSpeech2

TTS: VITS

"> Recipe

= https://github.com/open-mmlab/Amphion/tree/main/egs/tts/VITS
VITS Recipe

@ HuggingFace [Spaces | X OpenXLab Apps

In this recipe, we will show how to train VITS using Amphion's infrastructure. VITS is an end-to-end TTS architecture that utilizes conditional
variational autoencoder with adversarial learning.

There are four stages in total:

1. Data preparation
2. Features extraction
3. Training

4. Inference

NOTE: You need to run every command of this recipe in the Amphion root path:

cd Amphion

1. Data Preparation

Dataset Download

You can use the commonly used TTS dataset to train TTS model, e.g., LIJSpeech, VCTK, Hi-Fi TTS, LibriTTS, etc. We strongly recommend
using LJSpeech to train single-speaker TTS model for the first time. While for training multi-speaker TTS model for the first time, we would
recommend using Hi-Fi TTS. The process of downloading dataset has been detailed here.

https://github.com/open-mmlab/Amphion/tree/main/egs/tts/VITS

Readings

" Interspeech 2022 TTS tutorial

= https://github.com/tts-tutorial/interspeech2022/blob/main/
INTERSPEECH_Tutorial TTS.pdf

"> Text-to-Speech Synthesis

= https://www.cambridge.org/core/books/texttospeech-synthesis/
D2C567CEF939C7D15B2F1232992C 7836

49

https://github.com/tts-tutorial/interspeech2022/blob/main/INTERSPEECH_Tutorial_TTS.pdf
https://github.com/tts-tutorial/interspeech2022/blob/main/INTERSPEECH_Tutorial_TTS.pdf
https://www.cambridge.org/core/books/texttospeech-synthesis/D2C567CEF939C7D15B2F1232992C7836
https://www.cambridge.org/core/books/texttospeech-synthesis/D2C567CEF939C7D15B2F1232992C7836

