Lecture 14: Text-to-Speech Synthesis

Zhizheng Wu

Agenda

- Recap
- Applications
- Overview of text to speech
- Frontend
- Acoustic model
- Waveform generator
- Tools and readings

Text normalization

- Normalizing text into standard format
- Every NLP task requires text normalization
 - Tokenizing (segmenting) words
 - Normalizing word formats
 - Segmenting sentences

Grapheme to phoneme

- Grapheme: a letter or a group of letters that represent a single phoneme
- Phoneme: the smallest unit of sound that can distinguish one word from another in a particular language
- when a child says the sound /t/ this is a phoneme, but when they write the letter 't' this is a grapheme.

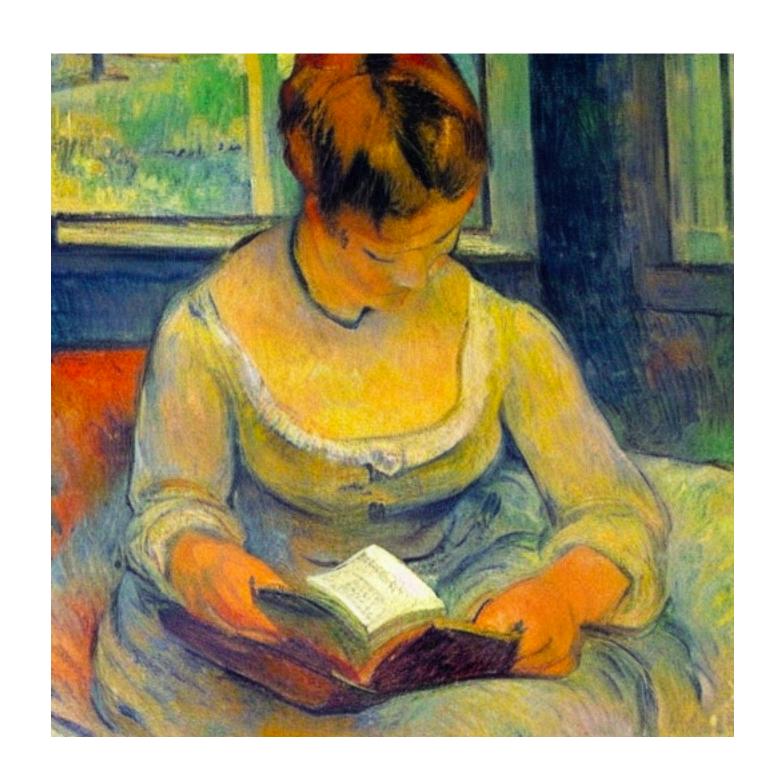
Grapheme to mato

Phoneme /t ə' m eɪ. t oʊ/

Part-of-speech tagging is a disambiguation process

Verb or Noun?

† The state of t



Embedding representations

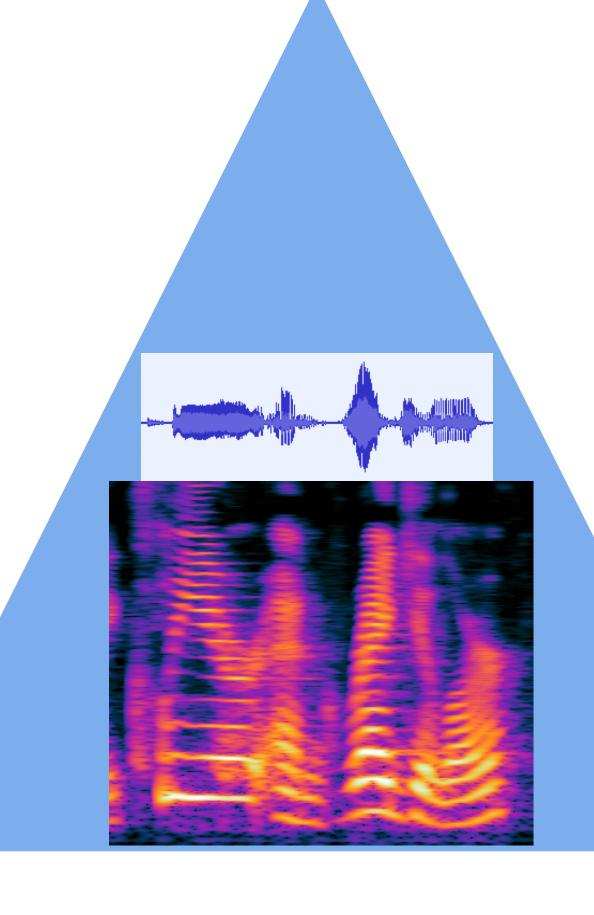
Dense Matrix

1	2	31	2	9	7	34	22	11	5
11	92	4	3	2	2	3	3	2	1
3	9	13	8	21	17	4	2	1	4
8	32	1	2	34	18	7	78	10	7
9	22	3	9	8	71	12	22	17	3
13	21	21	9	2	47	1	81	21	9
21	12	53	12	91	24	81	8	91	2
61	8	33	82	19	87	16	3	1	55
54	4	78	24	18	11	4	2	99	5
13	22	32	42	9	15	9	22	1	21

Sparse Matrix

1		3		9		3			
11		4						2	1
		1				4		1	
8				3	1				
			9			1		17	
13	21		9	2	47	1	81	21	9
				19	8	16			55
54	4				11				
		2					22		21

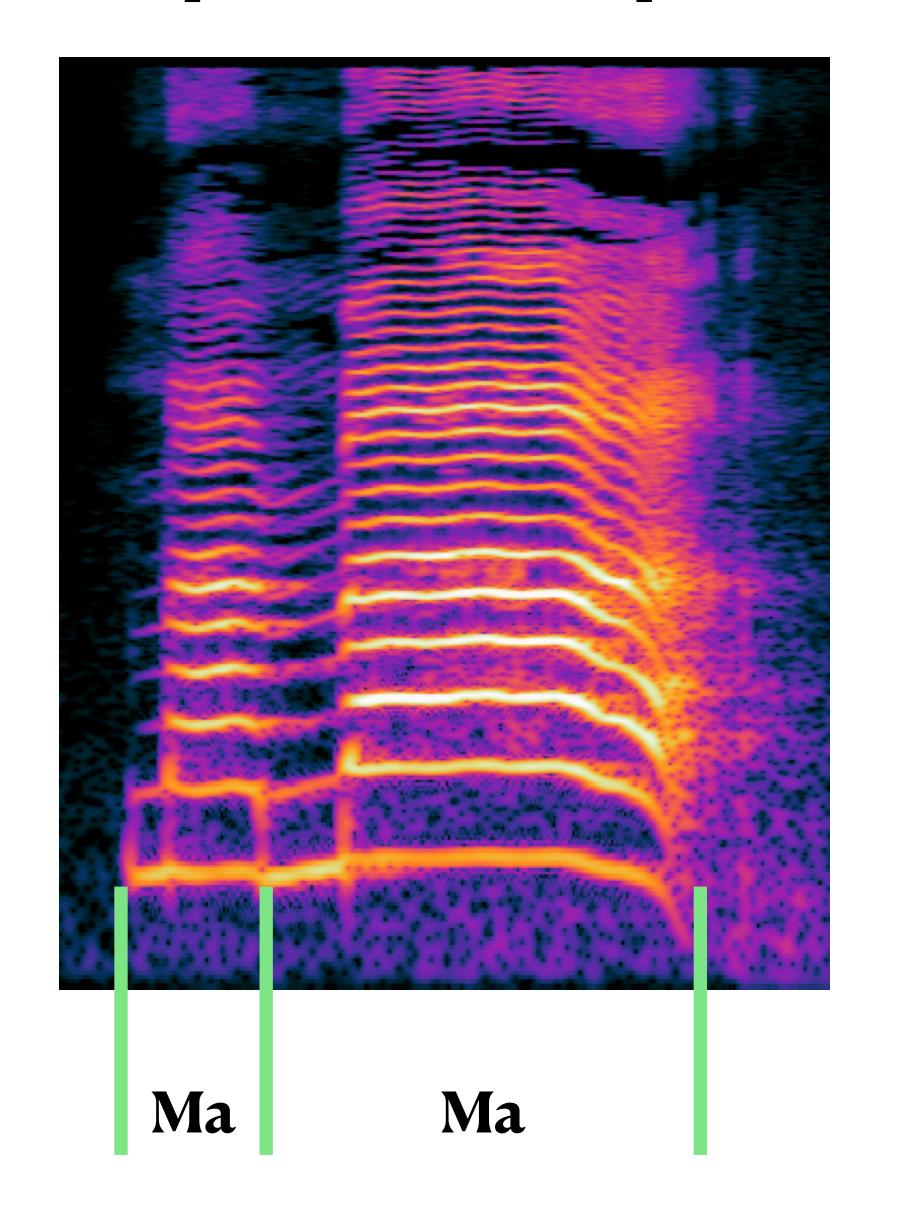
Content

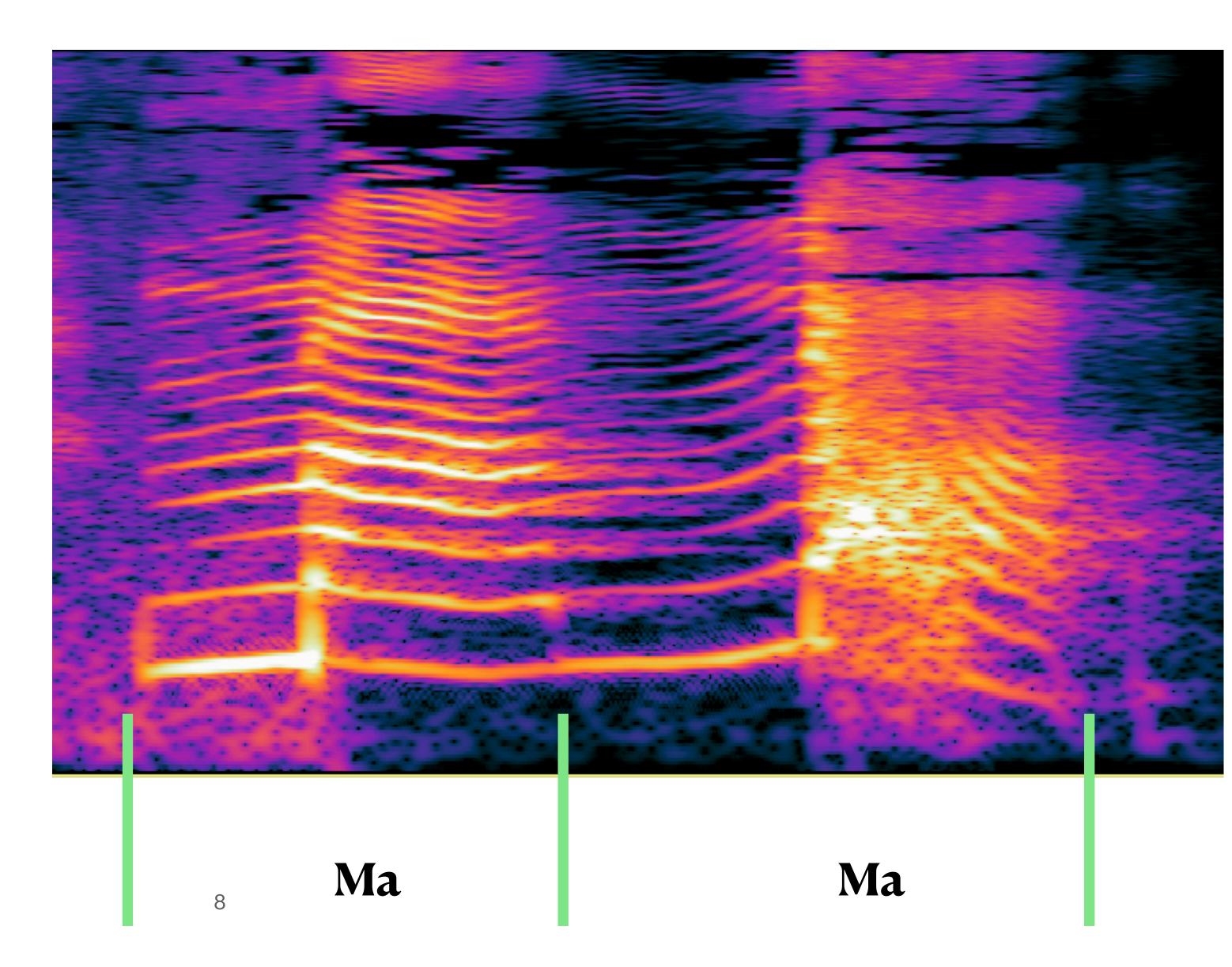


Timbre

Prosody

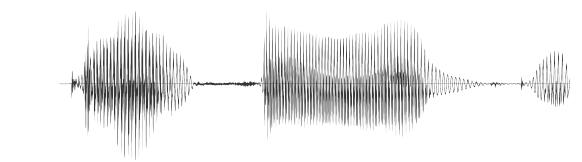
Speech representation



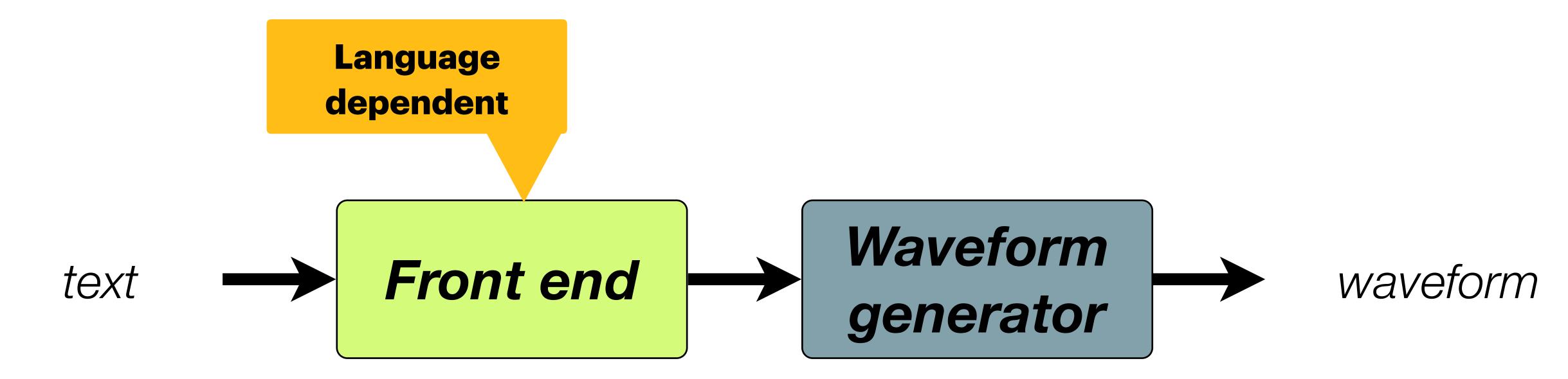


The end-to-end problem we want to solve

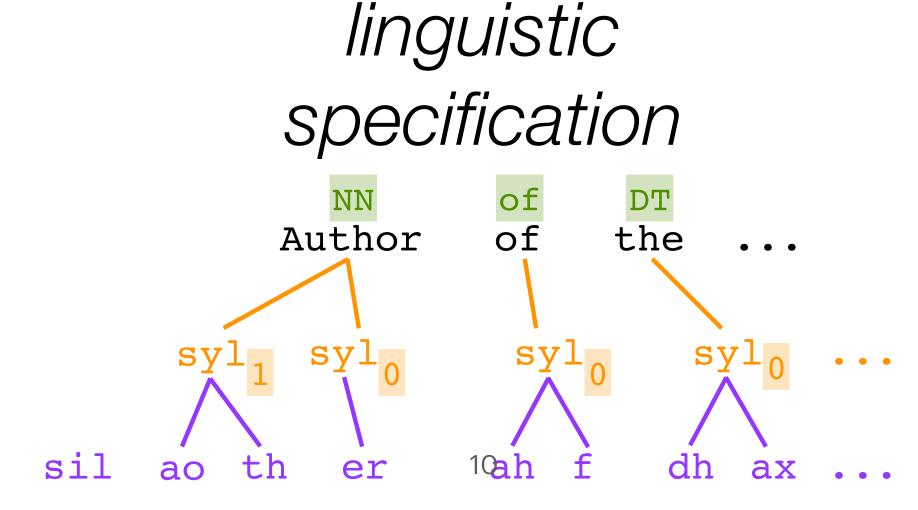
Author of the...

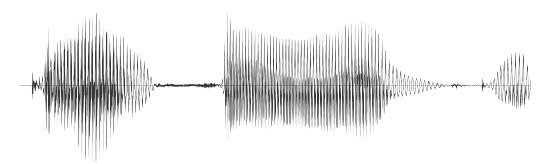


The two-stage pipeline

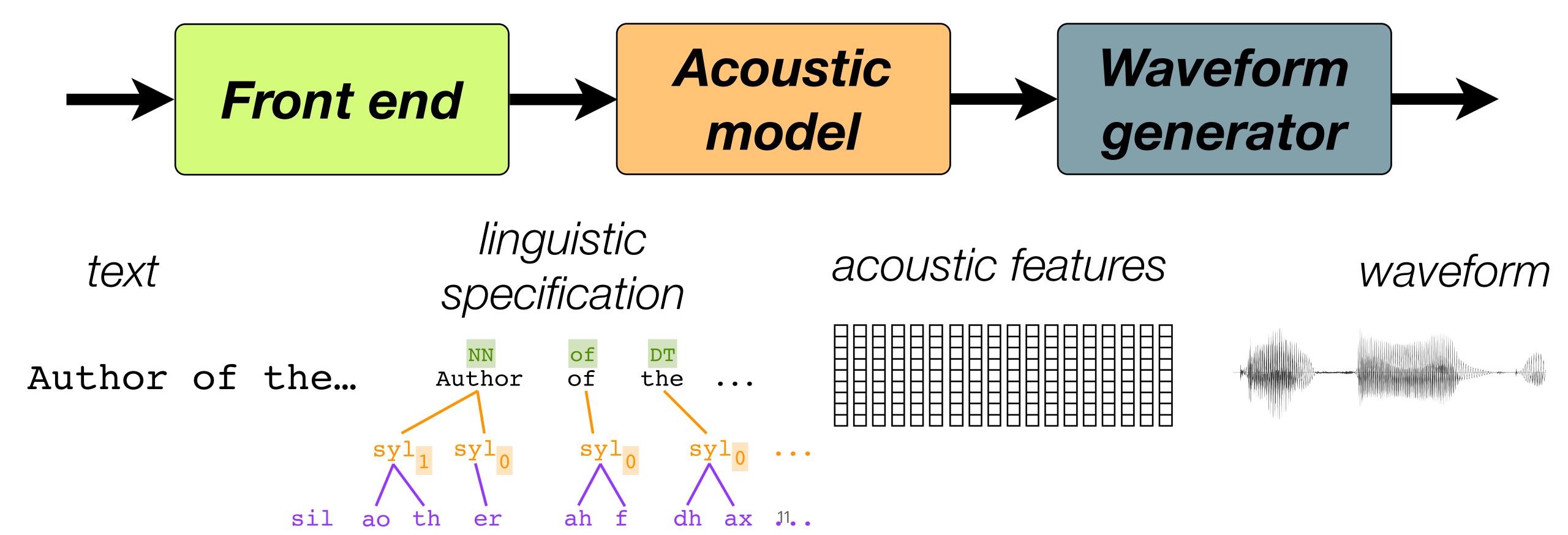


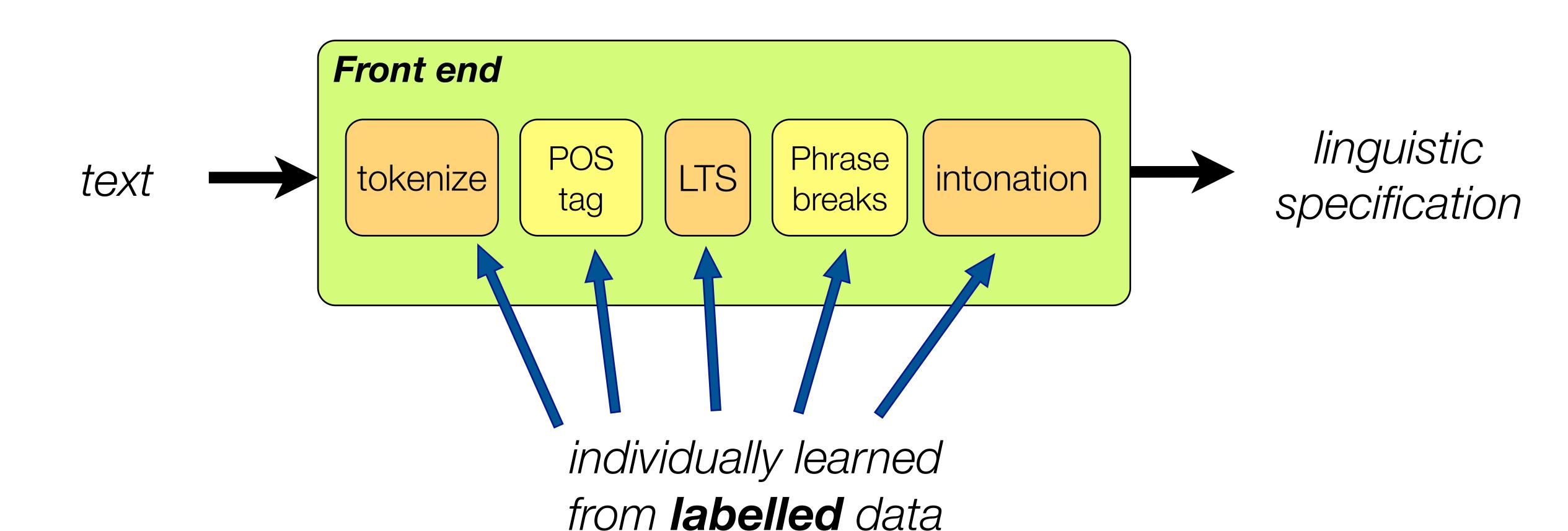
Author of the...





The three-stage pipeline





Language dependent: Each language has its unique characteristics

Hello world

世界你好

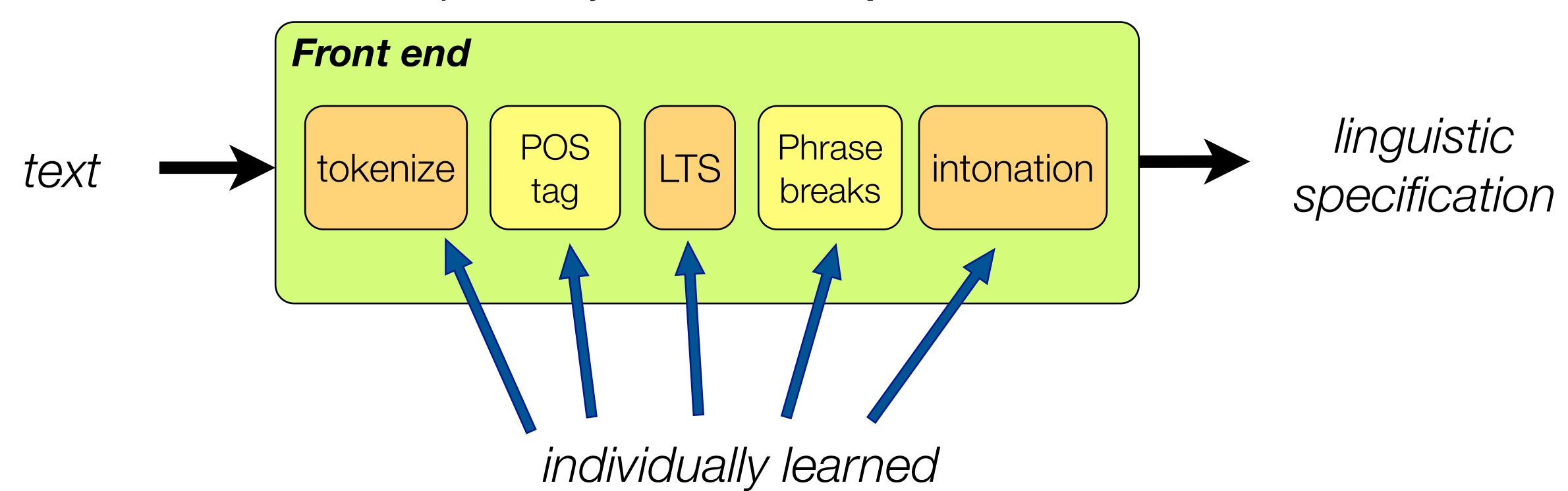
Handle text normalization

- \$123 -> one hundred and twenty three dollars

- Handle pronunciation of words in different context
 - Read
 - record
 - 奇偶 vs 奇怪

Classic front end

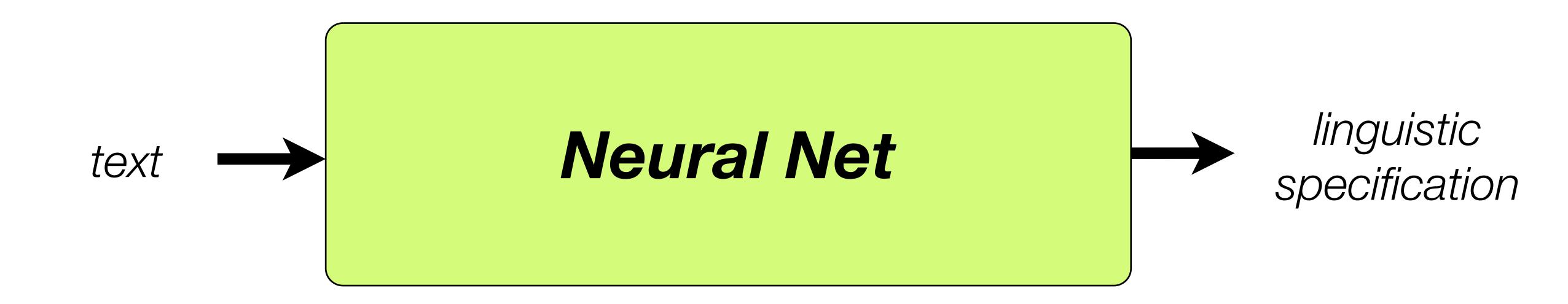
- A chain of processes
- Each process is performed by a model
- These models are independently trained in a supervised fashion on annotated data



from **labelled** data

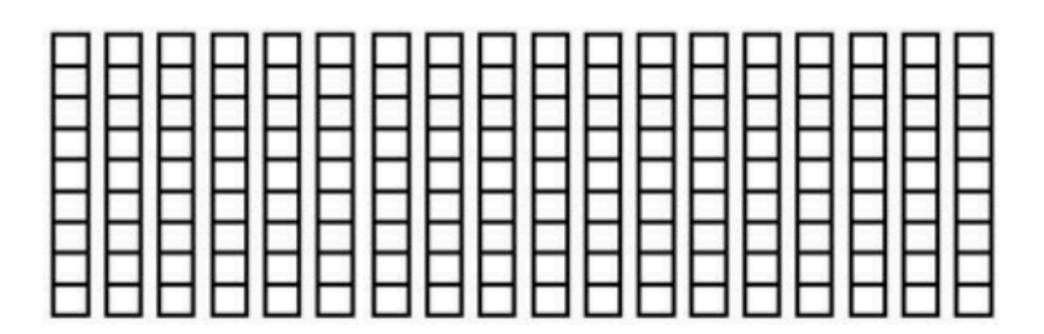
Neural front end

Learn by a neural network

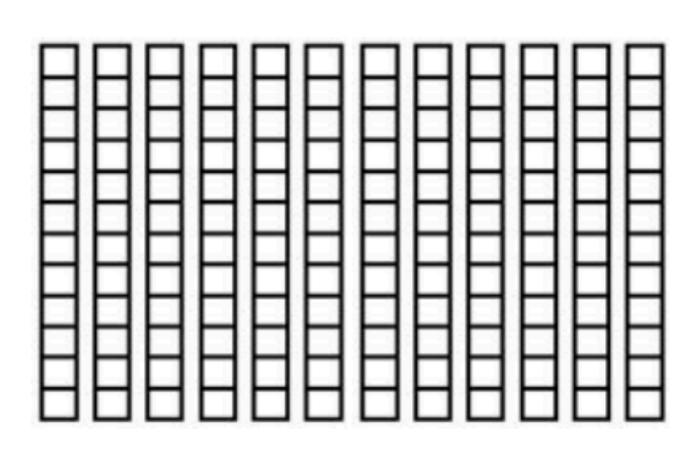


Linguistic features vs acoustic features

output sequence (acoustic features)



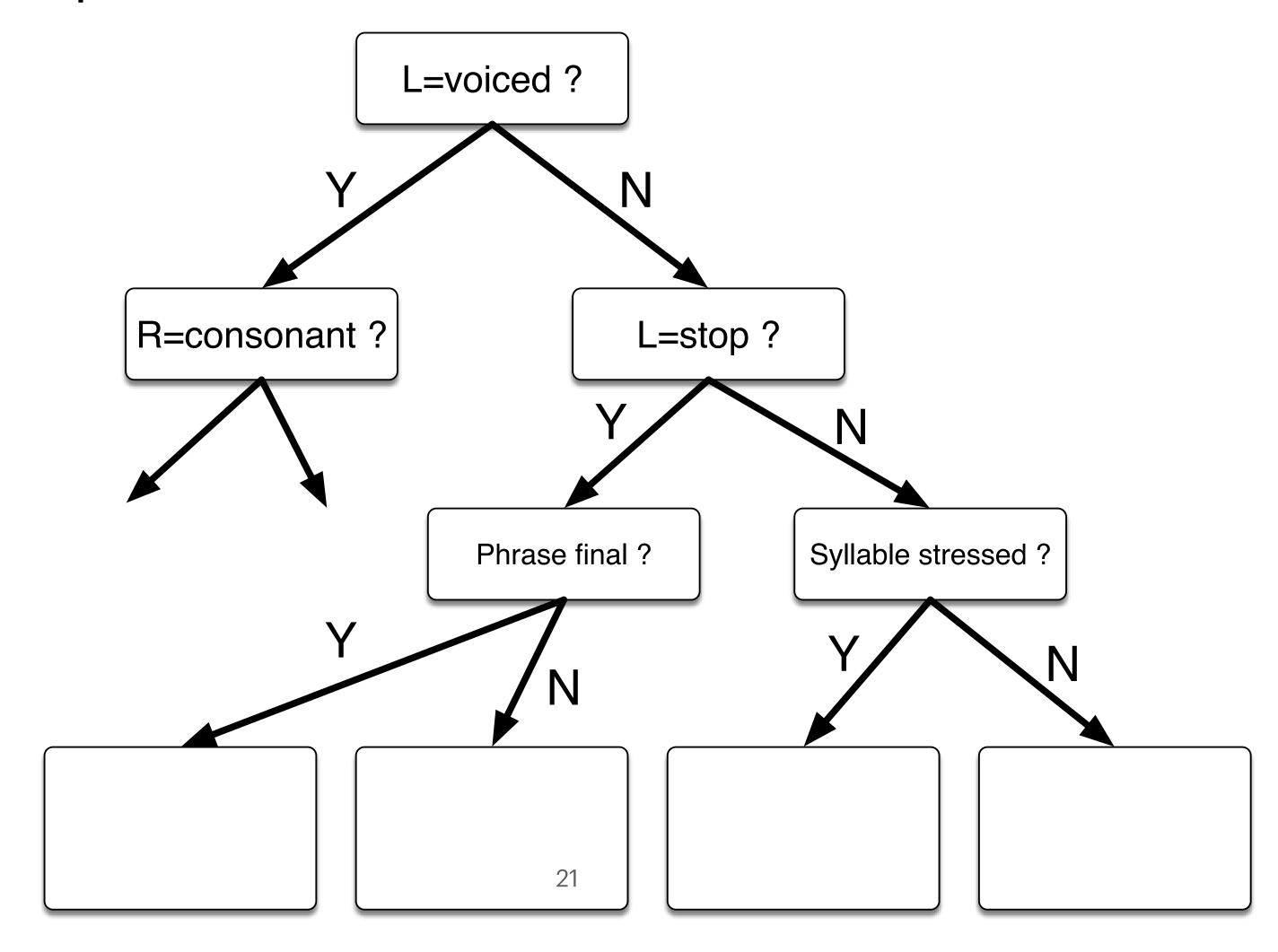
input sequence (linguistic features)



Acoustic model

Acoustic model - Decision tree

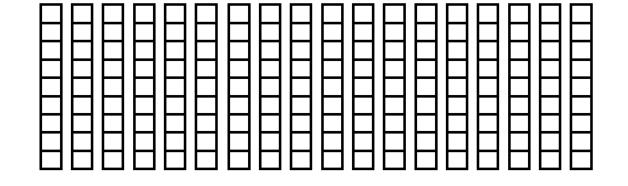
Decision tree to group HMM states, which model acoustic feature distribution

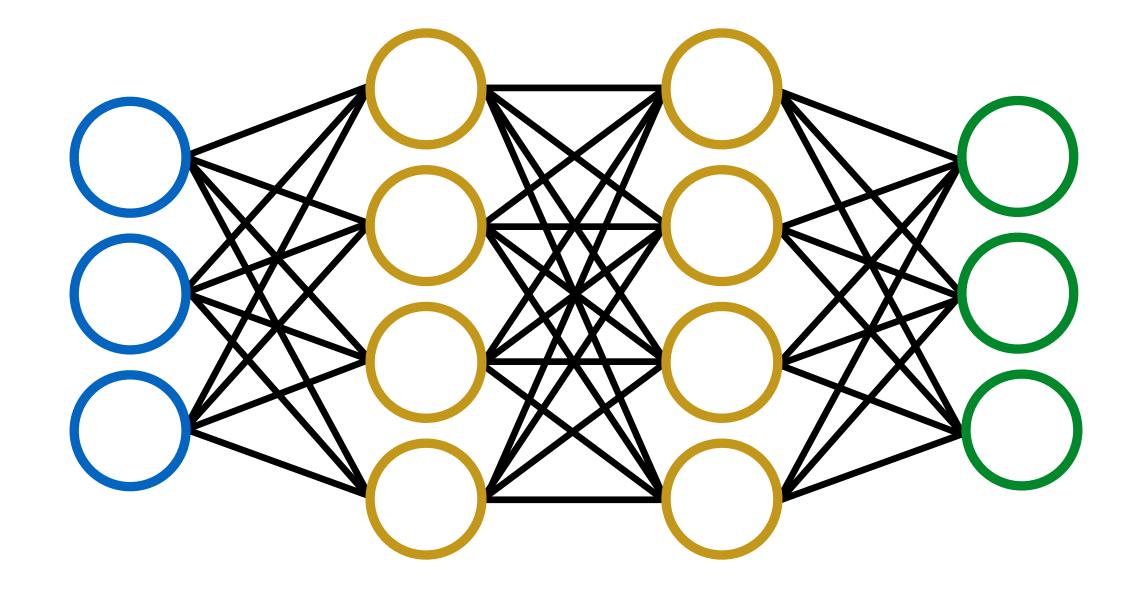


Acoustic model: DNN

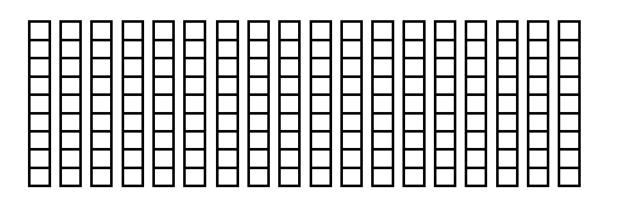
Feedforward neural network

input Linguistic features



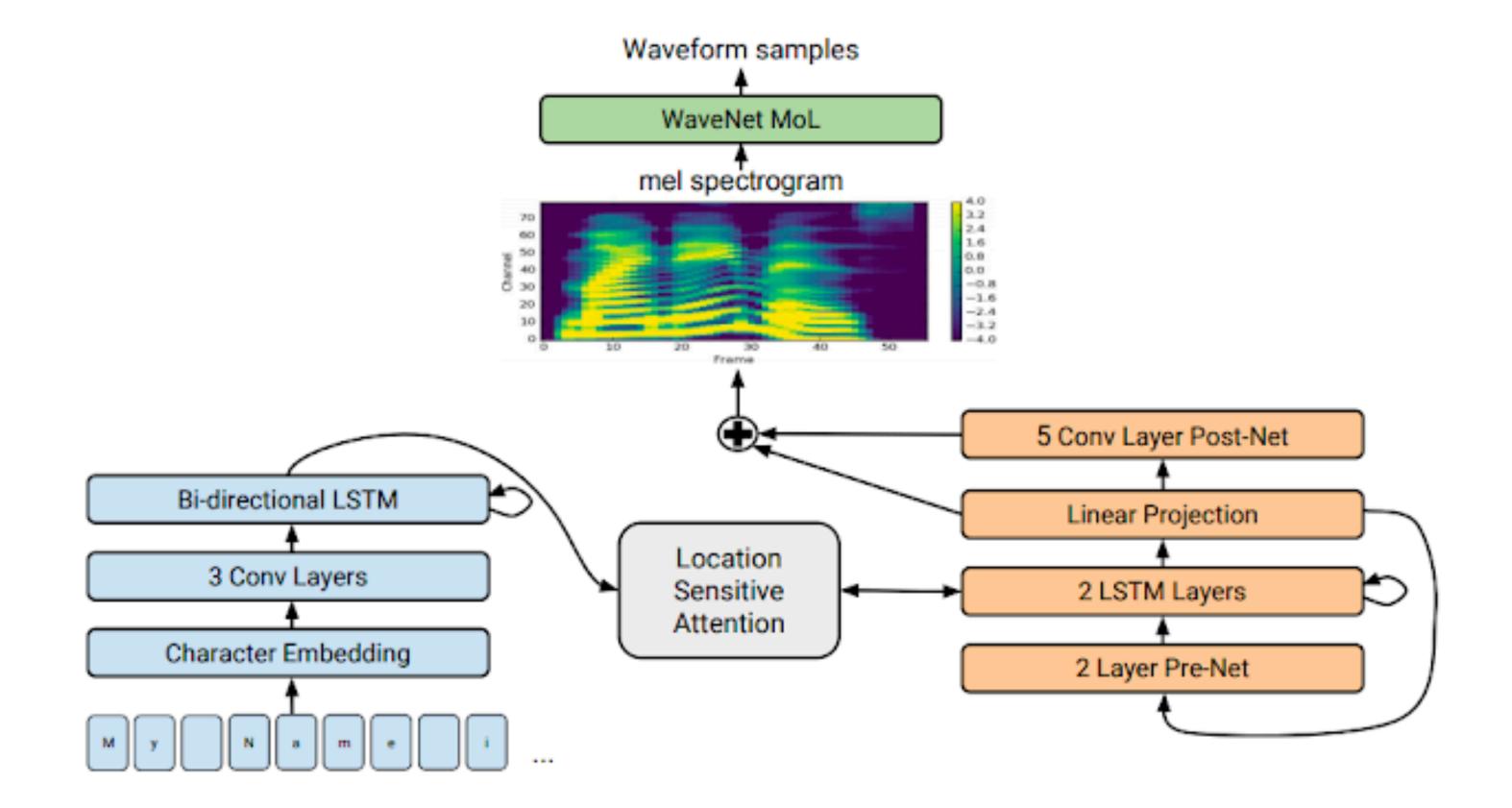


output acoustic features



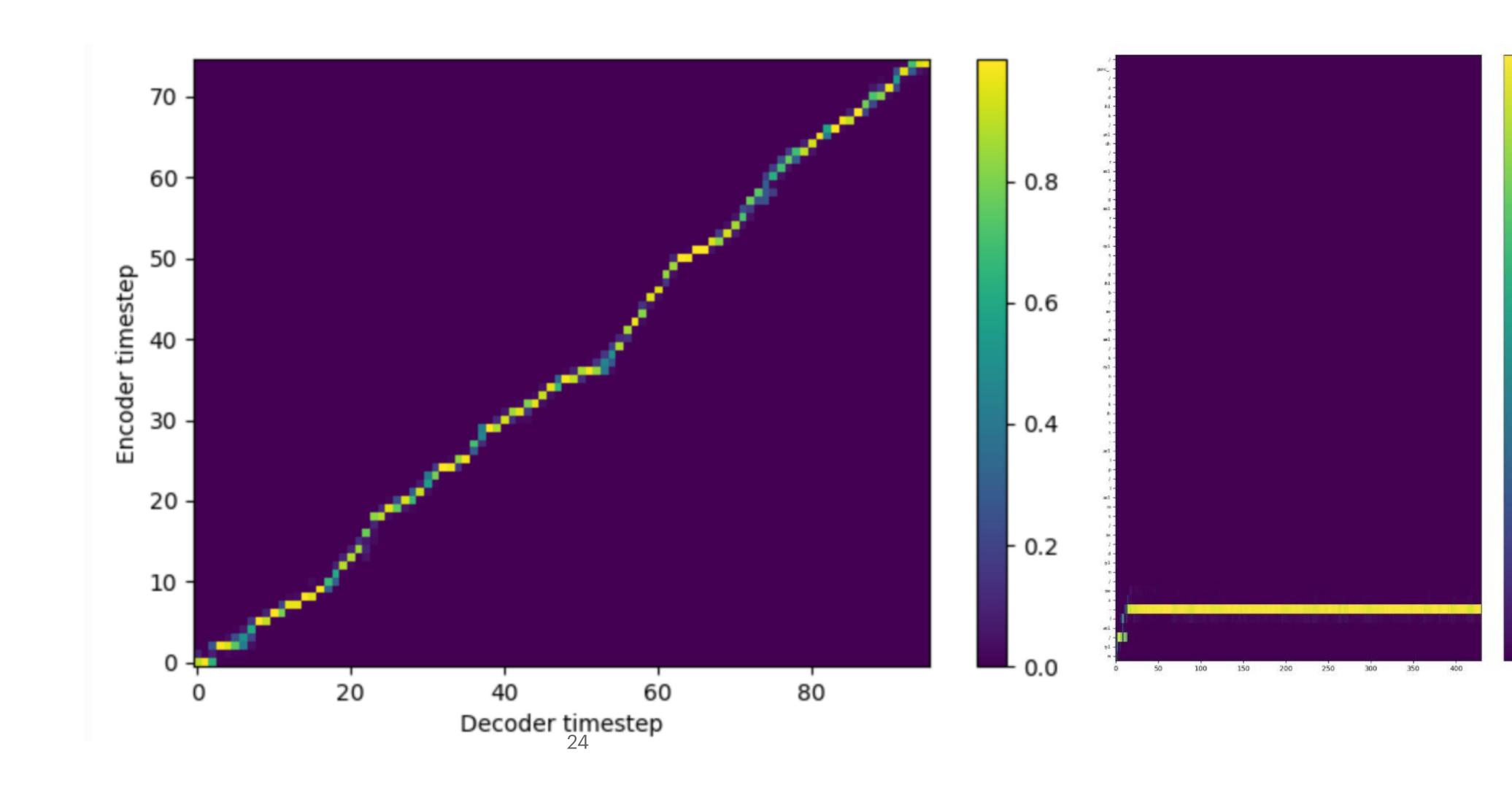
Acoustic model - RNN based

Tacotron2: A sequence-to-sequence model based on Recurrent Neural Networks



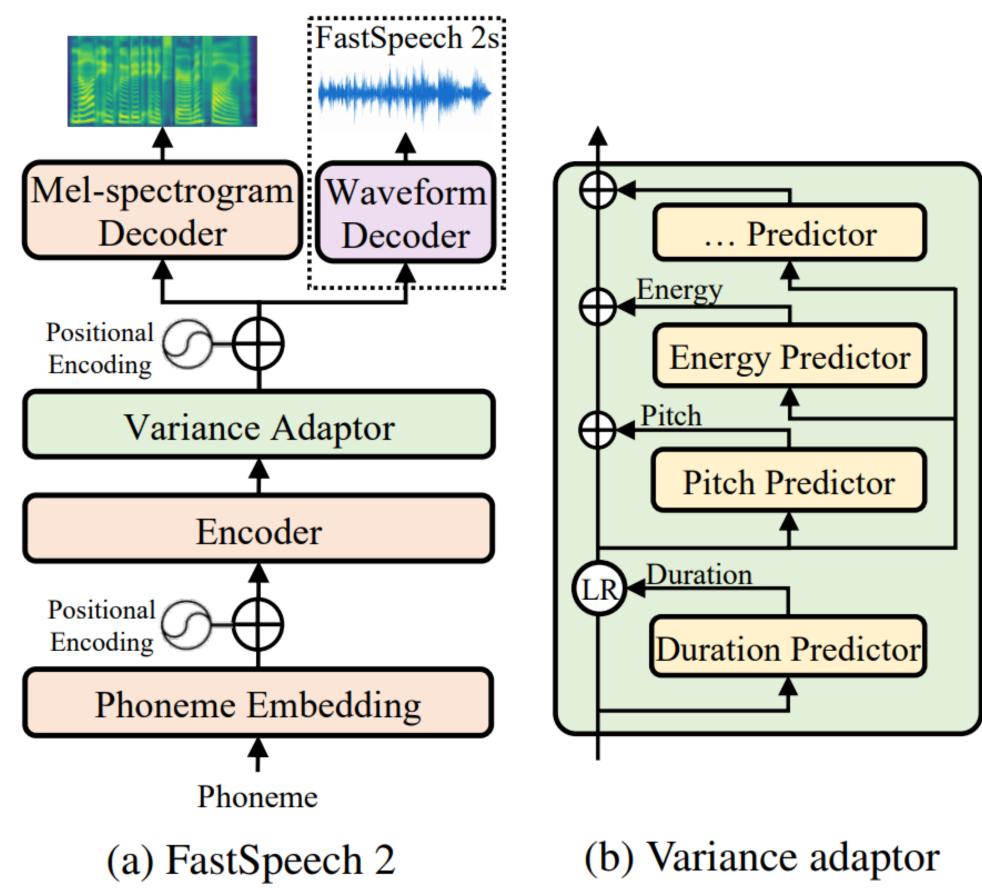
Acoustic model - RNN based

Attention



Acoustic model - Transformer based

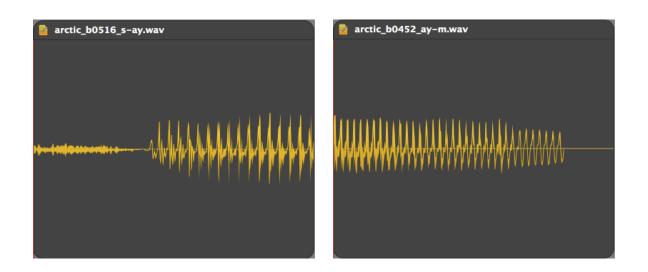
FastSpeech2: parallel generation and not depending on the location attention



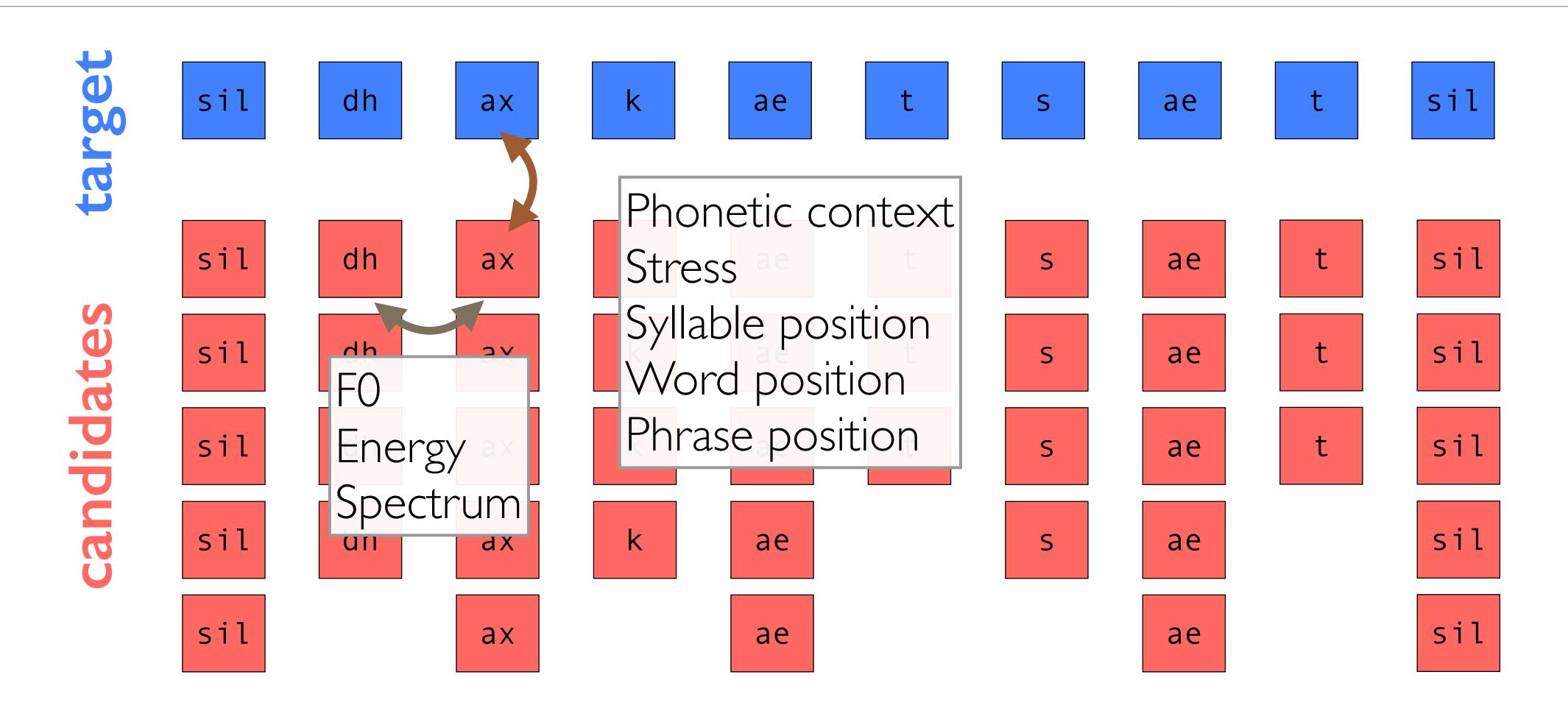
Ren, Yi, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. "Fastspeech 2: Fast and high-quality end-to-end text to speech." arXiv preprint arXiv:2006.04558 (2020).

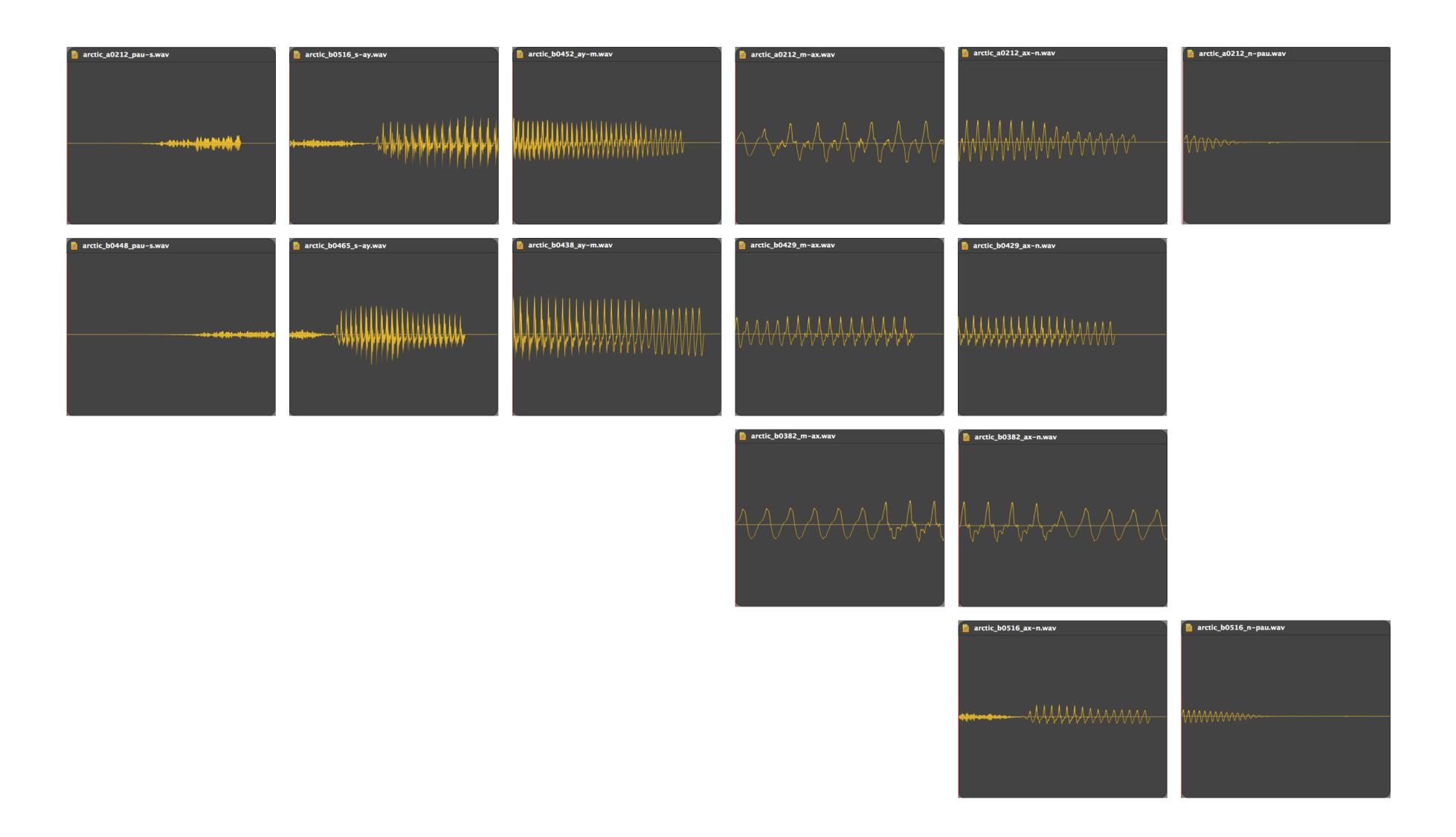
Waveform generator

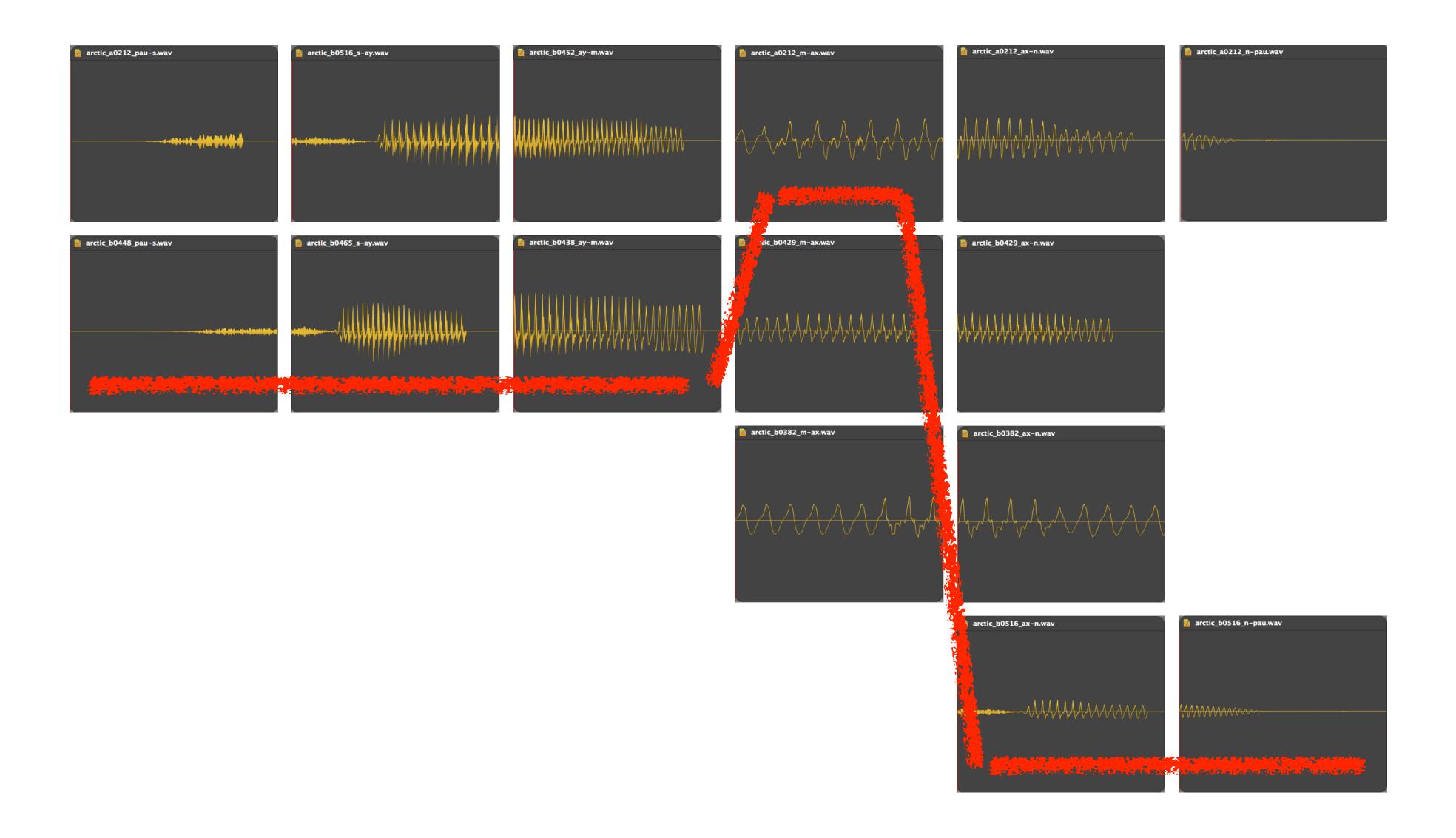
Waveform generator: Waveform concatenation

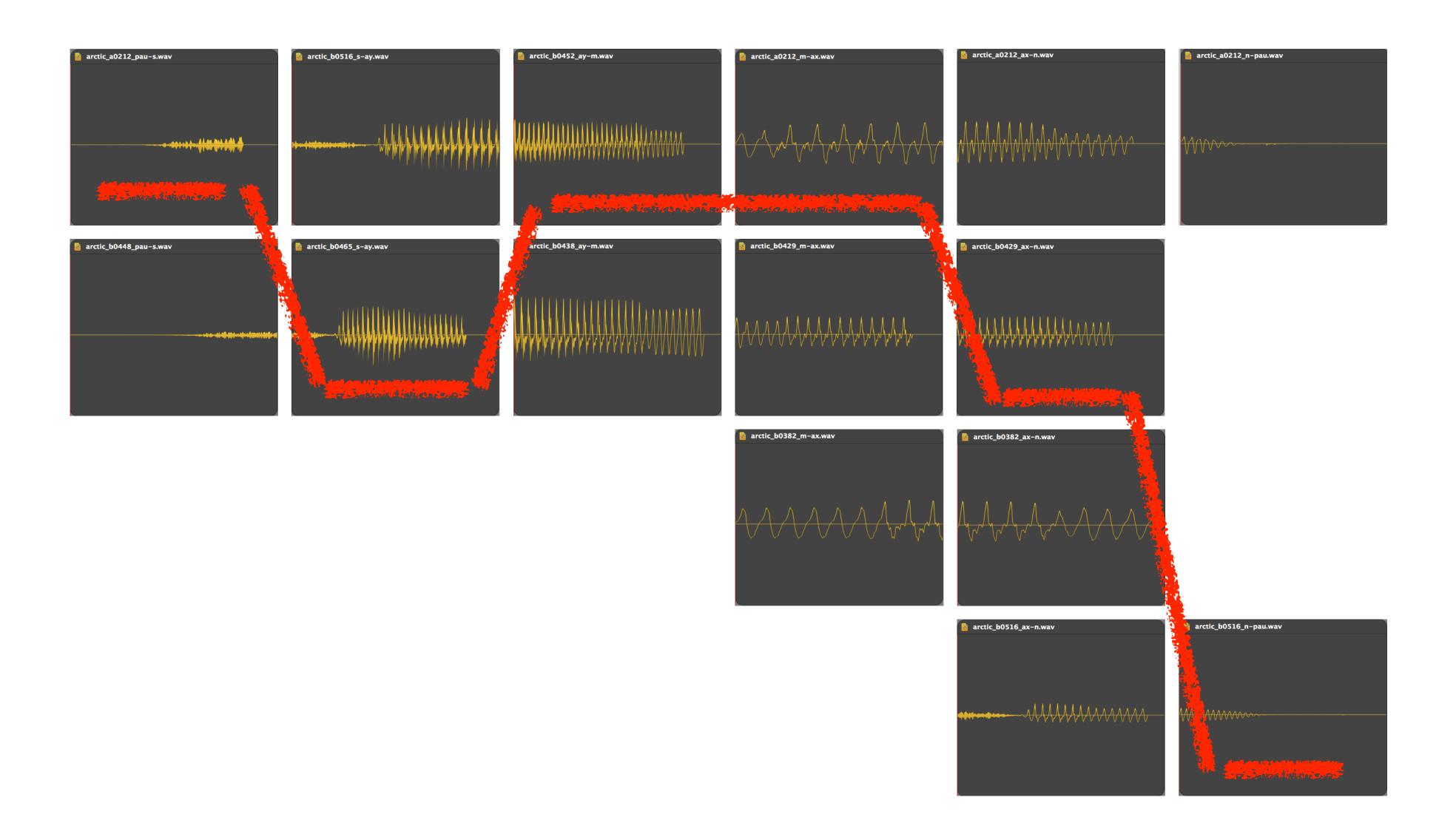


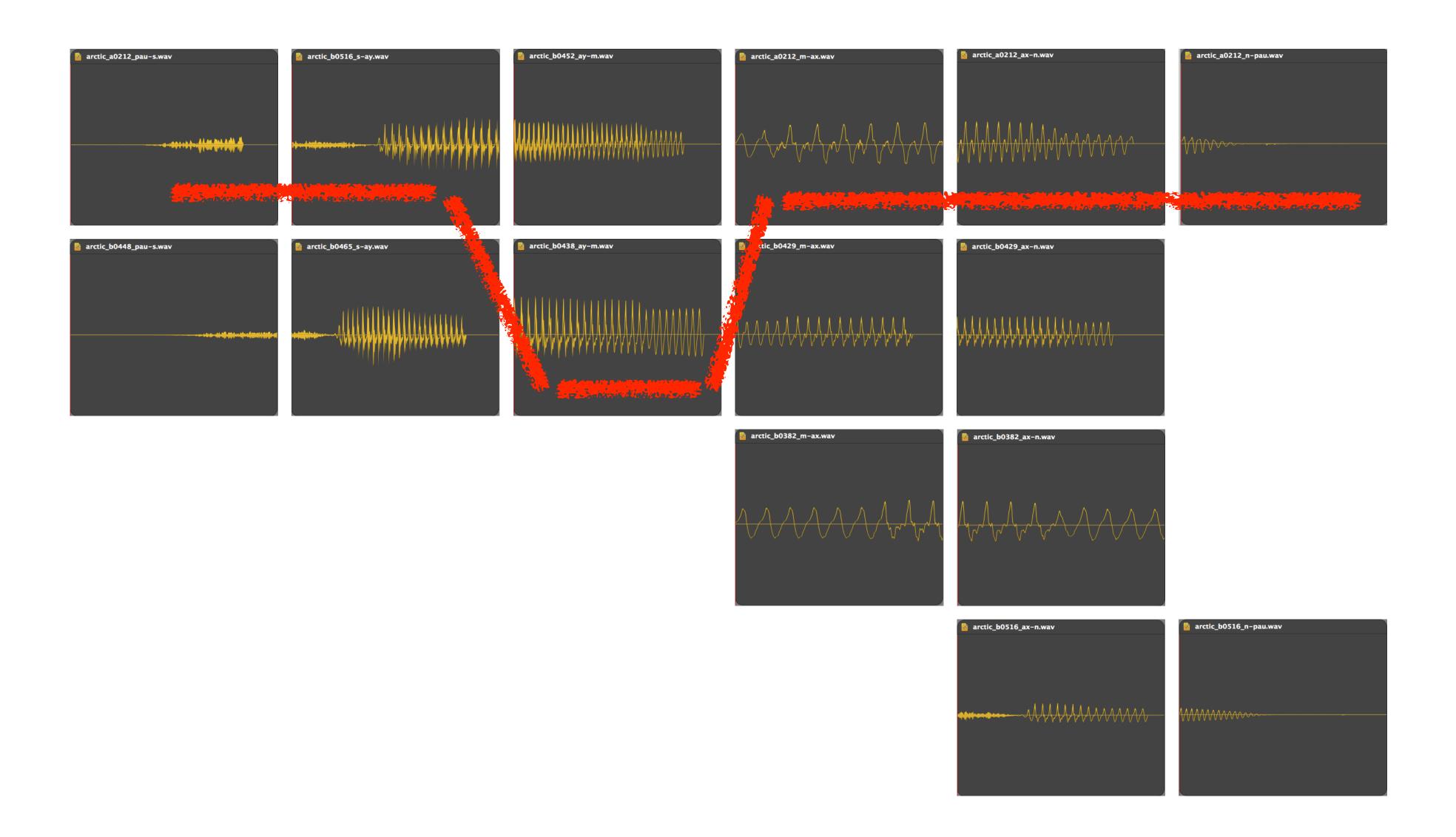
Classical unit selection (drawn here with phone units) - target and join costs



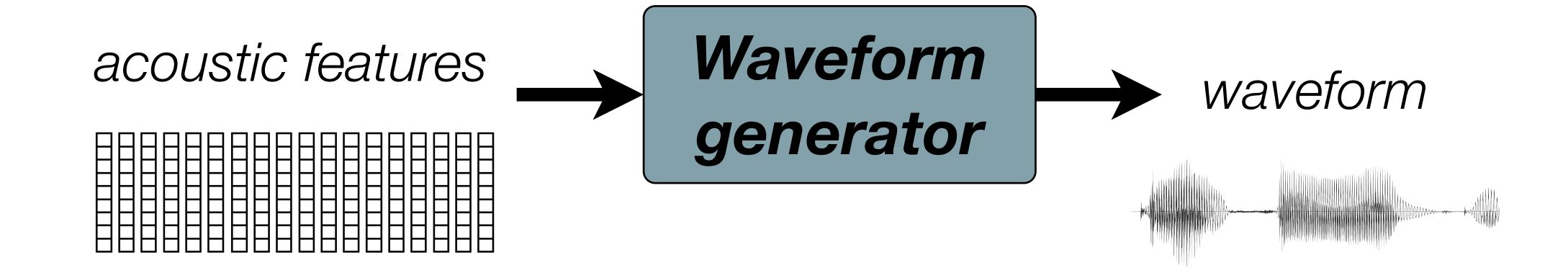






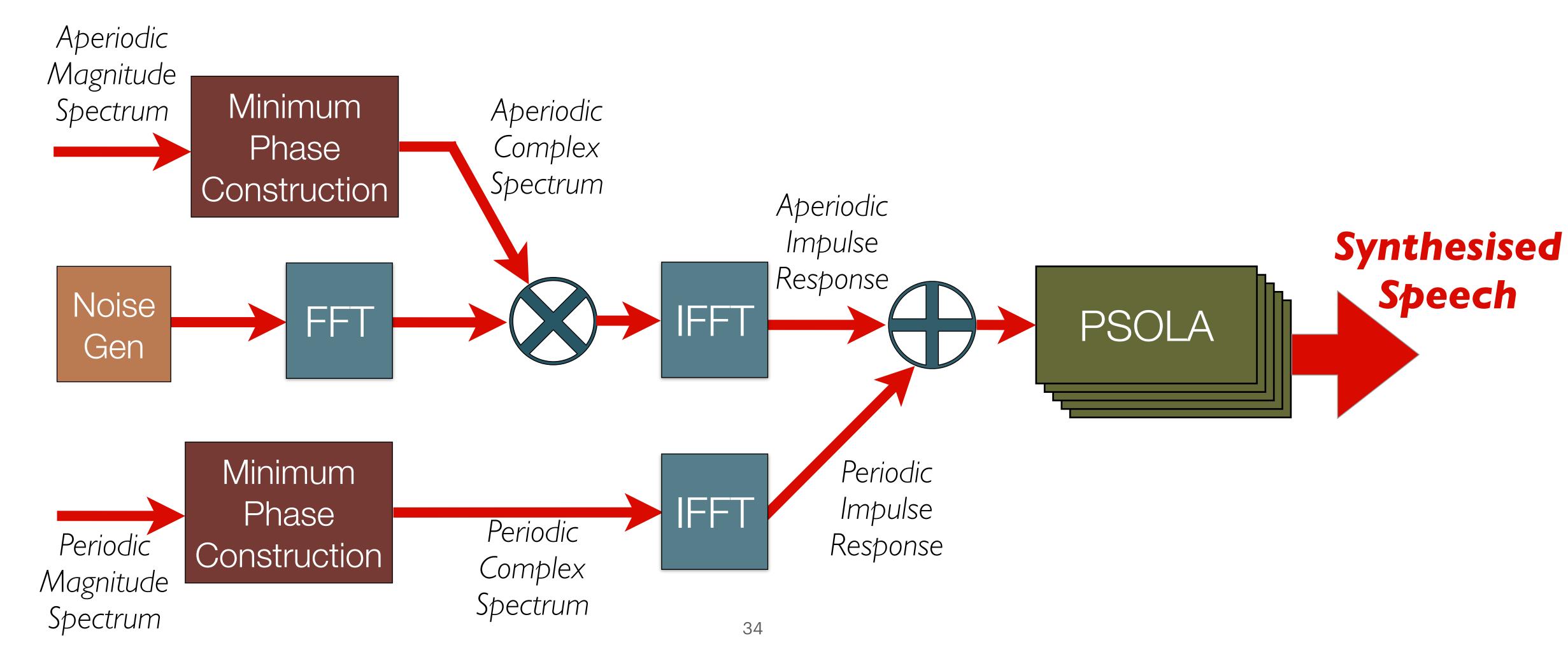


Waveform generator: Vocoder



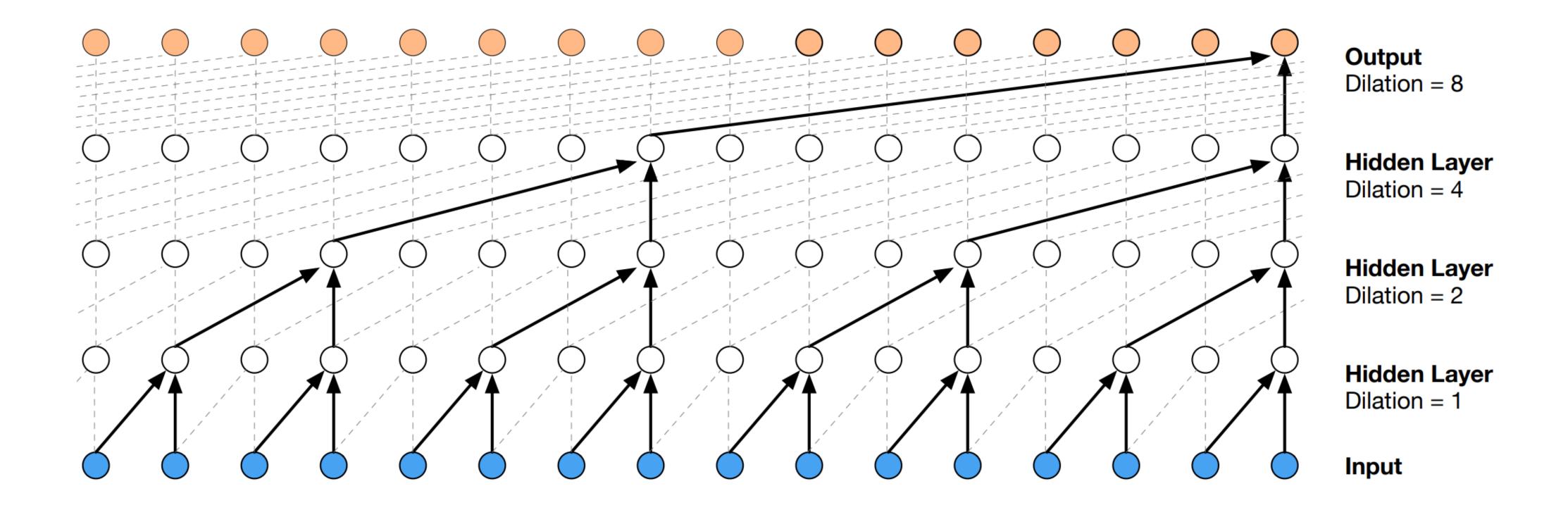
Vocoder - Signal processing based

WORLD vocoder



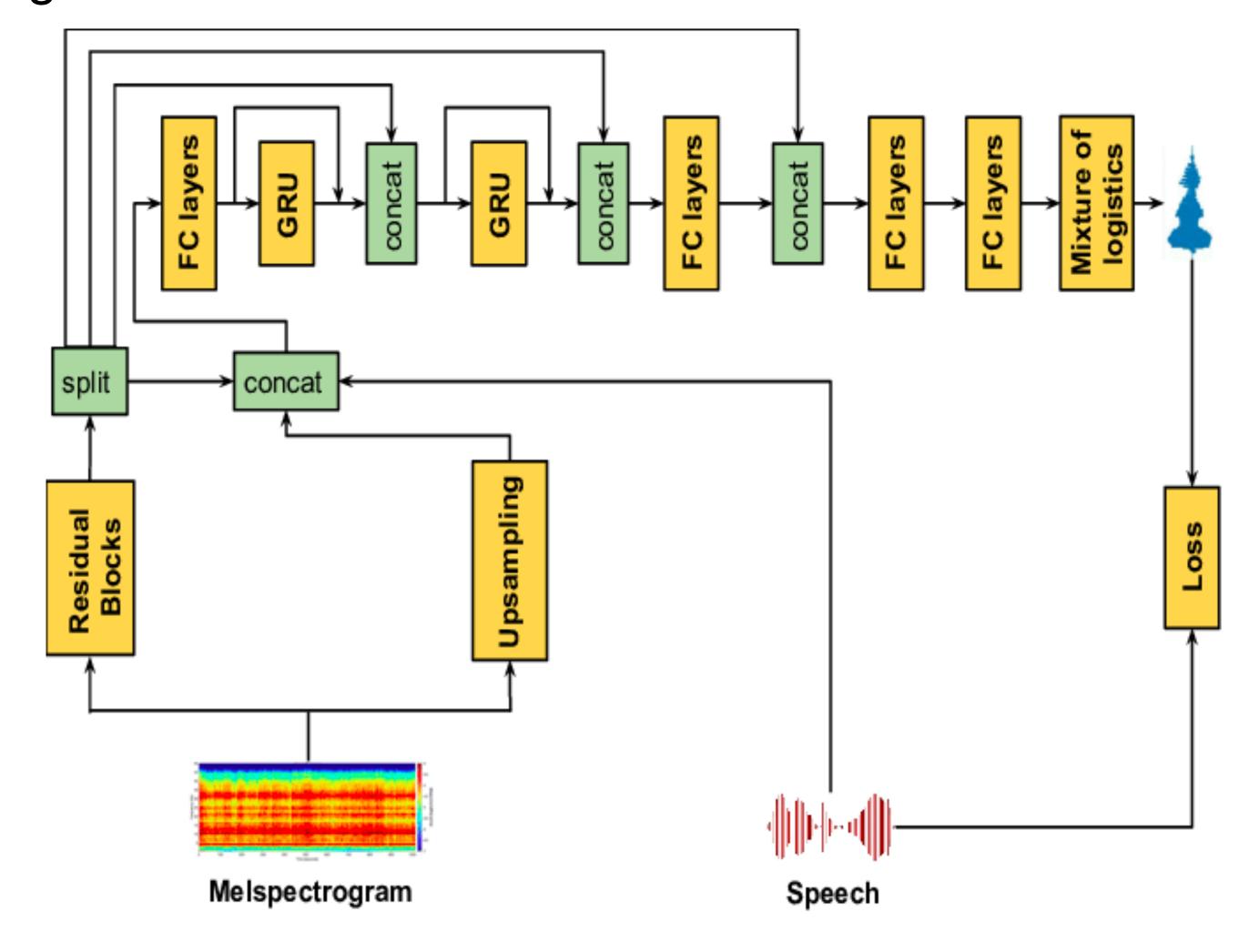
Vocoder: Autoregressive

WaveNet: autoregressive model with dilated causal convolution



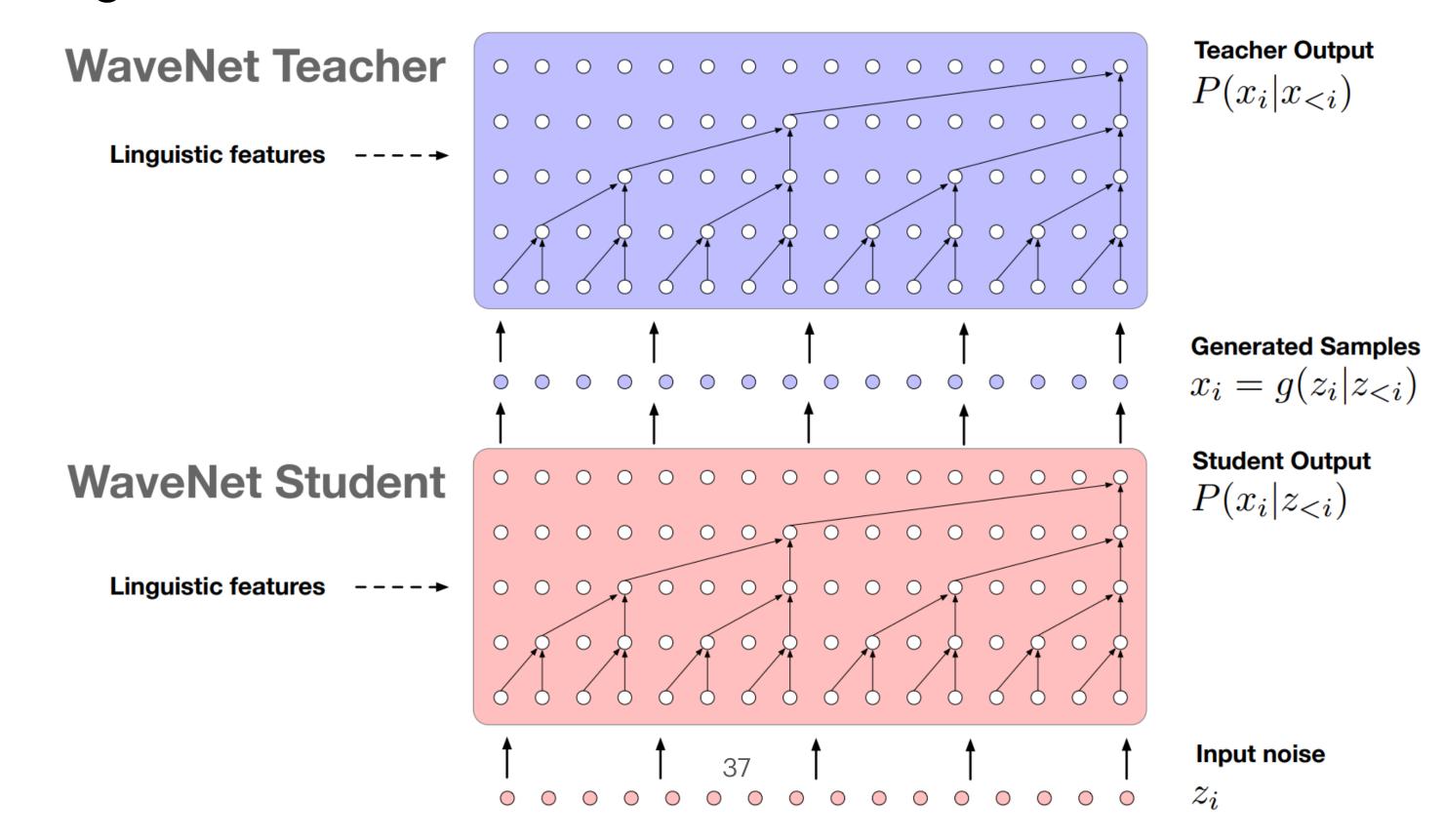
Vocoder: Autoregressive

WaveRNN: autoregressive model with RNN



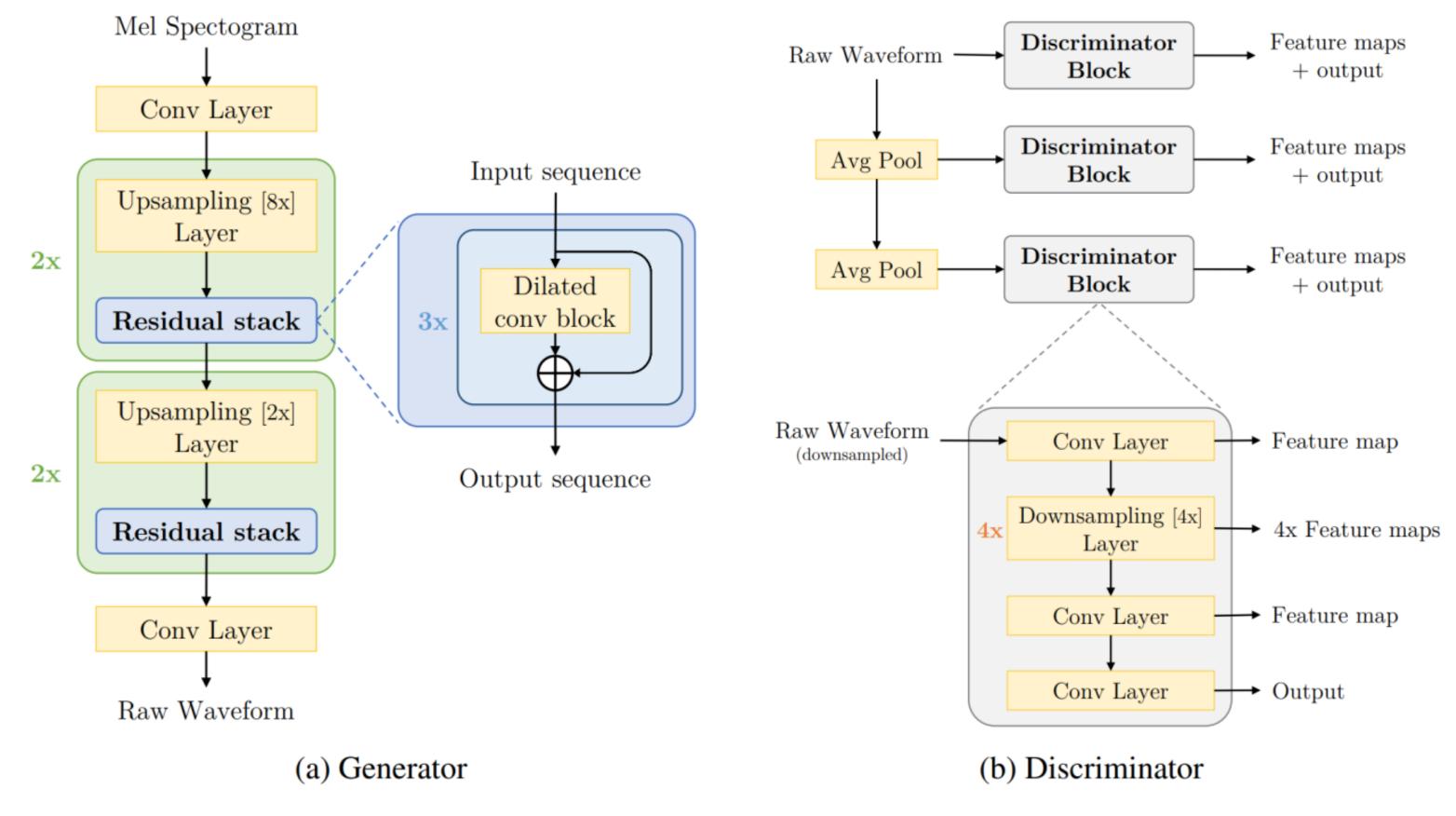
Vocoder: Flow based

- AF (autoregressive flow) and IAF (inverse autoregressive flow)
 - Parallel inference of IAF student
 - Parallel training of AF teacher



Vocoder: GAN based

MelGAN: Generator + Discriminator

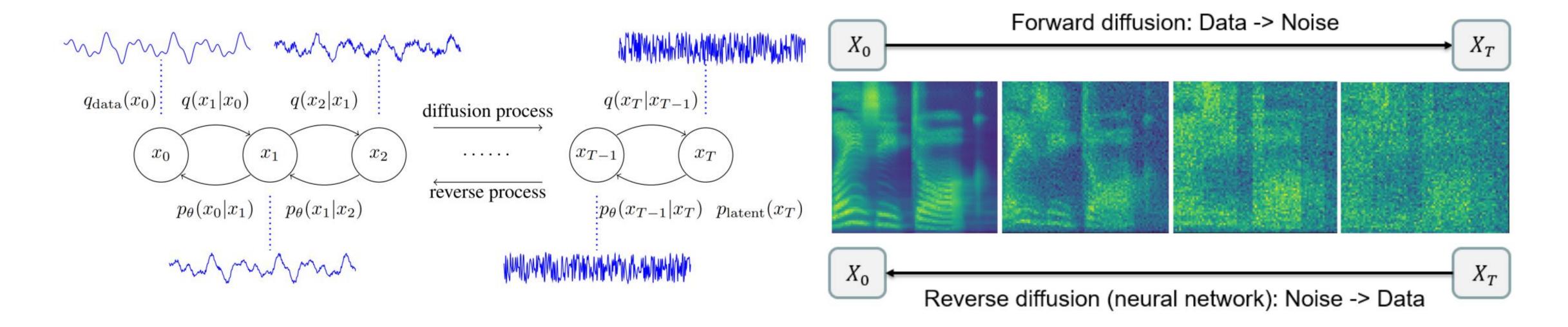


Vocoder: Diffusion based

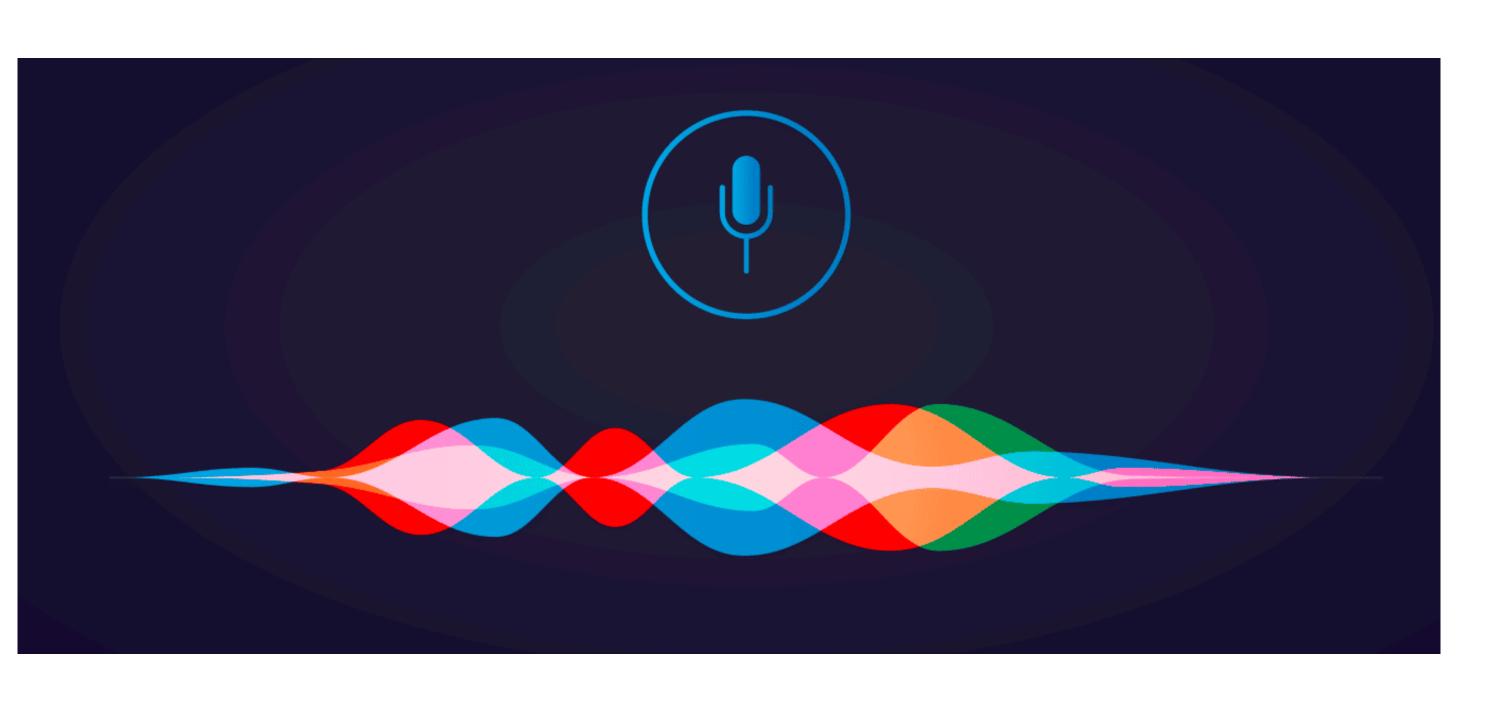
- Diffusion probabilistic model
 - Forward process: diffusion
 - Reverse process: denoising

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1}), \quad q(\mathbf{x}_t|\mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

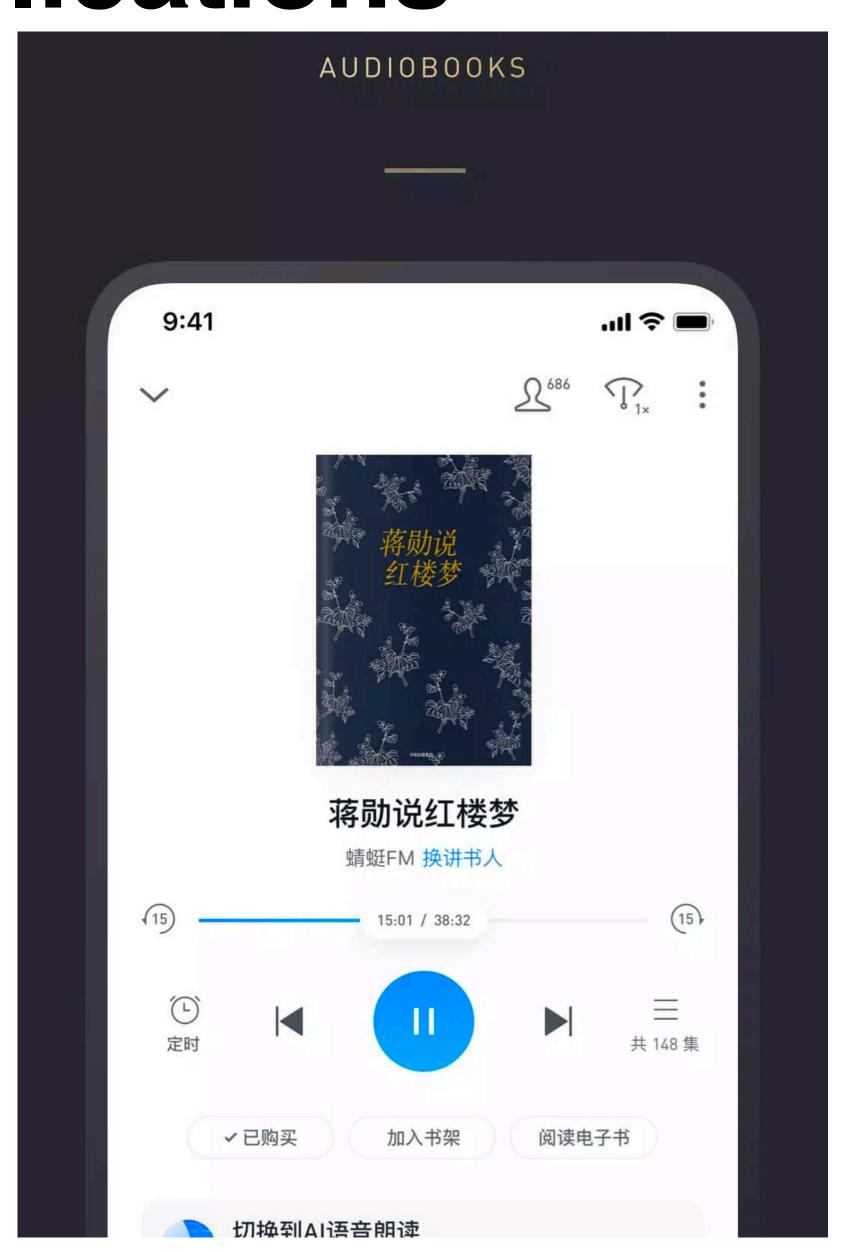
$$p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t), \quad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$



Applications



Applications

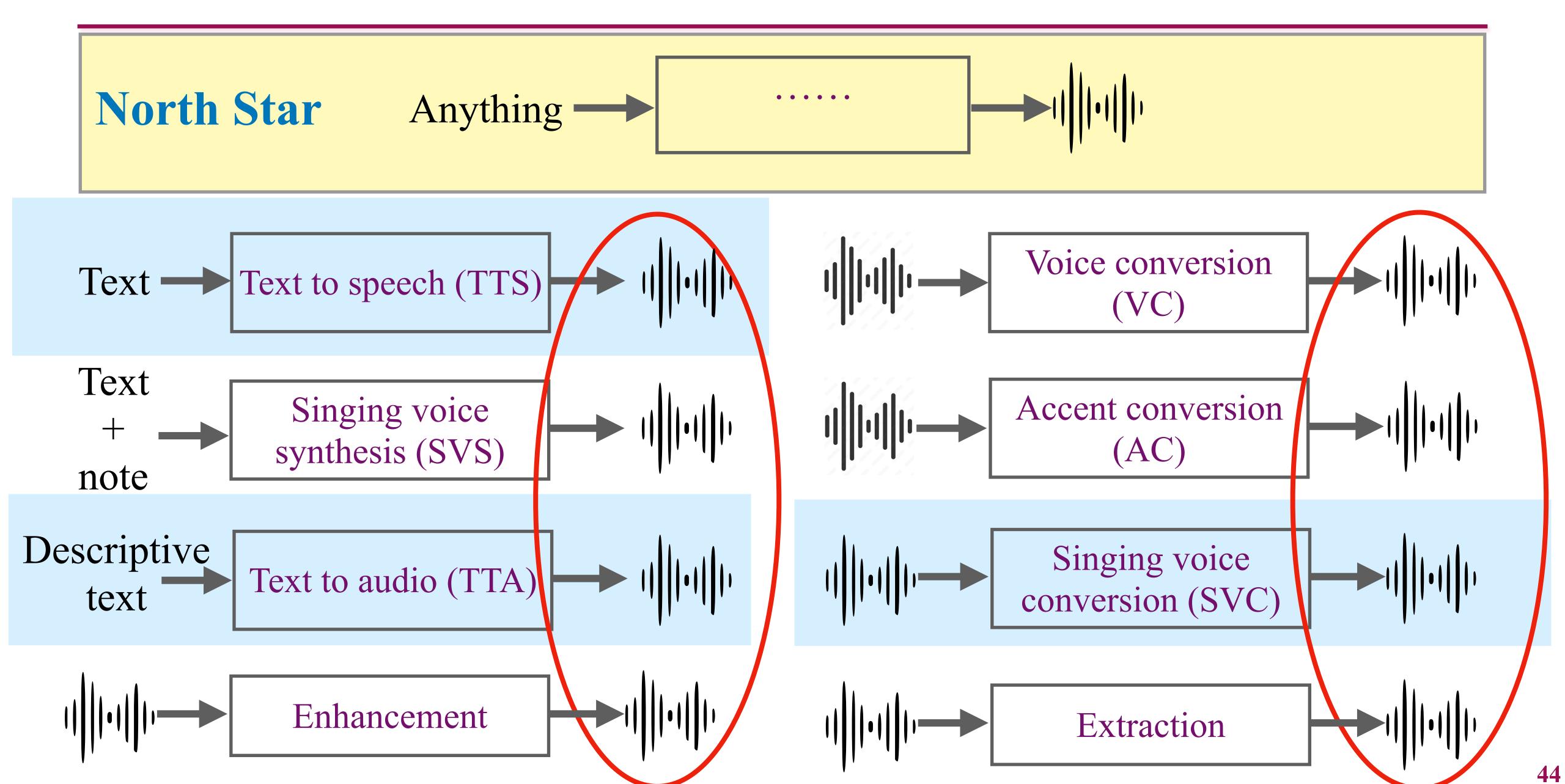


Applications

Tools

- TTS open-source
 - https://github.com/open-mmlab/Amphion
 - https://github.com/coqui-ai/TTS
 - https://github.com/espnet/espnet

Amphion: Generating audio, music and speech



Vocoder

• Objective comparison with existing toolkits. Eval on dev-test set of LibriTTS

System	PESQ(†)	FORMSE(↓)	Sampling Rate	Data	Steps	GitHub
Amphion (HiFiGAN)	3.55	161.2	24khz	LibriTTS LJSpeech VCTK	1.5M	https://github.com/open-mmlab/Amphion
HiFiGAN	3.41	229.35	22.05khz	LibriTTS LJSpeech VCTK	2.5M	https://github.com/jik876/hifi-gan
ESPNet	3.55	199.17	24khz	LibriTTS	2.5M	https://github.com/kan-bayashi/ ParallelWaveGAN

TTS: Objective and subjective results

• Training data: LJSpeech

System	CER(↓)	WER(↓)	FAD(↓)	Speaker Similarity ↑	MOS
Amphion (VITS)	0.06	0.10	0.84	0.97	3.61 ± 0.1
Coqui/TTS (VITS)	0.06	0.12	0.54	0.98	3.69 ± 0.1
SpeechBrain (Fastspeech2)	0.06	0.11	1.71	0.94	3.54 ± 0.11
Tortoise-tts (Diffusion-based model)	0.05	0.09	1.90	0.55	3.61 ± 0.11
ESPNet (VITS)	0.07	0.11	1.28	0.99	3.57 ± 0.11

TTS: FastSpeech2

- Recipe
 - https://github.com/open-mmlab/Amphion/tree/main/egs/tts/FastSpeech2

FastSpeech2 Recipe

In this recipe, we will show how to train <u>FastSpeech2</u> using Amphion's infrastructure. FastSpeech2 is a non-autoregressive TTS architecture that utilizes feed-forward Transformer blocks.

There are four stages in total:

- 1. Data preparation
- 2. Features extraction
- 3. Training
- 4. Inference

NOTE: You need to run every command of this recipe in the Amphion root path:

cd Amphion

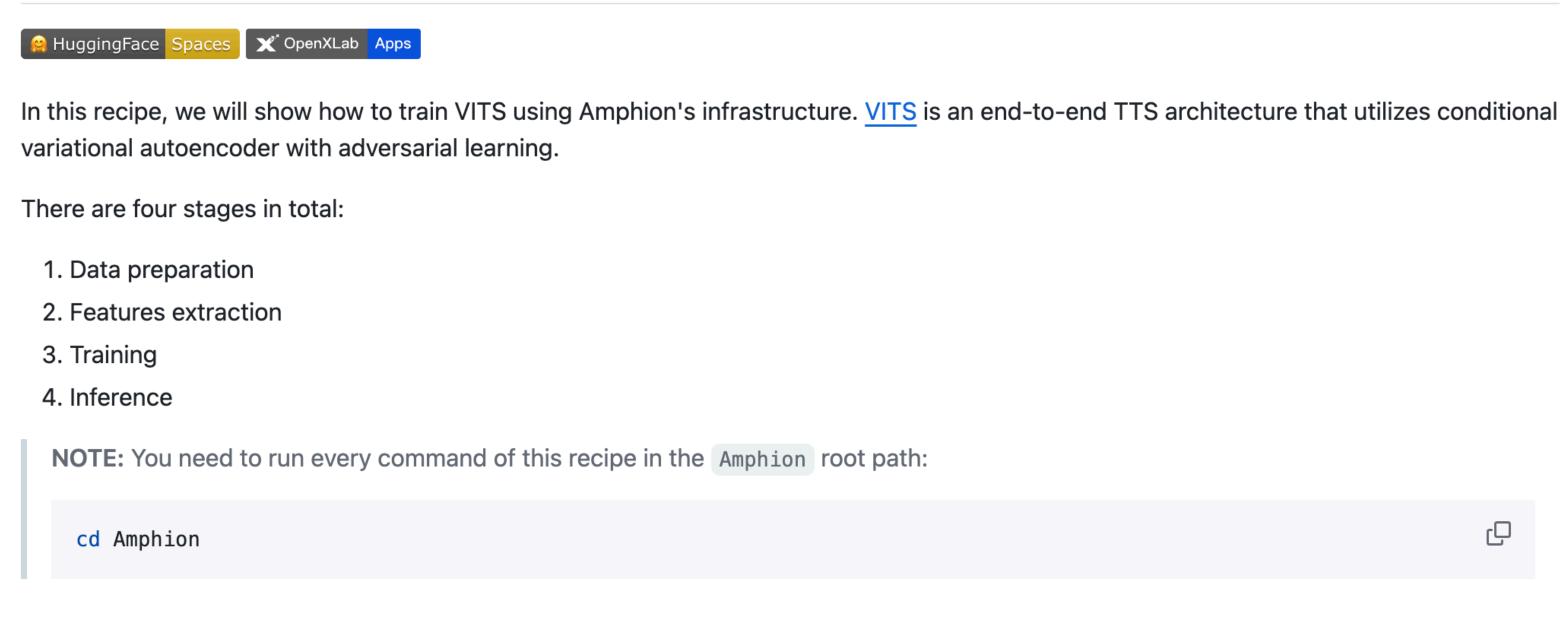
1. Data Preparation

Dataset Download

You can use the commonly used TTS dataset to train TTS model, e.g., LJSpeech, VCTK, LibriTTS, etc. We strongly recommend you use LJSpeech to train TTS model for the first time. How to download dataset is detailed here.

TTS: VITS

- Recipe
 - https://github.com/open-mmlab/Amphion/tree/main/egs/tts/VITS
 VITS Recipe



1. Data Preparation

Dataset Download

You can use the commonly used TTS dataset to train TTS model, e.g., LJSpeech, VCTK, Hi-Fi TTS, LibriTTS, etc. We strongly recommend using LJSpeech to train single-speaker TTS model for the first time. While for training multi-speaker TTS model for the first time, we would recommend using Hi-Fi TTS. The process of downloading dataset has been detailed here.

Readings

- Interspeech 2022 TTS tutorial
 - https://github.com/tts-tutorial/interspeech2022/blob/main/ INTERSPEECH_Tutorial_TTS.pdf
- Text-to-Speech Synthesis
 - https://www.cambridge.org/core/books/texttospeech-synthesis/D2C567CEF939C7D15B2F1232992C7836