Lecture 14: Text-to-Speech Synthesis
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Text normalization

> Normalizing text into standard format

> Every NLP task requires text normalization
= Tokenizing (segmenting) words
= Normalizing word formats
= Segmenting sentences



Grapheme to phoneme

> Grapheme: a letter or a group of letters that represent a single phoneme

> Phoneme: the smallest unit of sound that can distinguish one word from another in a
particular language

> when a child says the sound /t/ this is a phoneme, but when they write the letter 't' this
IS a grapheme.

Grapheme tomato

Phoneme /to m el.tou/



Part-of-speech tagging is a disambiguation process

Verb or Noun? Verb or Noun?

She is reading a book about Reading




Dense Matrix

Embedding representations
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Speech representation




The end-to-end problem we want to solve
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The two-stage pipeline
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The three-stage pipeline

Acoustic Waveform
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Frontend



Front end
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Front end

> Language dependent: Each language has its unique characteristics

Hello world T AR 4



Front end

> Handle text normalization

- $123 -> one hundred and twenty three dollars



Front end

> Handle pronunciation of words in different context

- Read
= record




Classic front end

> A chain of processes

> Each process is performed by a model

> These models are independently trained in a supervised fashion on annotated data
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Neural front end

> Learn by a neural network

text

Neural Net
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Linguistic features vs acoustic features

(coustc featured) EEEEEEEEEEEEEEEEEE



Acoustic model
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Acoustic model - Decision tree

" Decision tree to group HMM states, which model acoustic feature distribution

L=voiced ?

N

R=consonant ? [ L=stop ?

SN Y

Phrase final ? ] Syllable stressed ? ]
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M /N\




Acoustic model: DNN

> Feedforward neural network

Input
Linguistic features

output
acoustic features

do the iﬂﬂovements come from?." In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5505-5509. IEEE, 2016



Acoustic model - RNN based

> Tacotron2: A sequence-to-sequence model based on Recurrent Neural Networks

Waveform samples

4
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Shen, Jonathan, et al. "Natural tts synthesis by conditioning wavenet on mel spectrogram predictions." 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2018.
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Acoustic model - RNN based

> Attention

- 0.8

Encoder timestep

Decoder timestep

0.6

0.4

0.2

0.0



Acoustic model - Transformer based

"> FastSpeech2: parallel generation and not depending on the location attention

Positional
Encoding

Pitch Predictor
uration
Positional
Encoding Duration Predictor
Phoneme Embedding
Phoneme
(a) FastSpeech 2 (b) Variance adaptor

Ren, Yi, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. "Fastspeech 2: Fast and high-quality end-to-end text to speech." arXiv preprint arXiv:2006.04558 (2020).
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Waveform generator
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Waveform generator: Waveform concatenation
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Classical unit selection (drawn here with phone units) - target anc
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Waveform generator: Vocoder

acoustic features N

Waveform
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Vocoder - Signal processing based

> WORLD vocoder
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Vocoder: Autoregressive

> WaveNet: autoregressive model with dilated causal convolution

© © © 060000 00000 00,0

Output
Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input
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Vocoder: Autoregressive

> WaveRNN: autoregressive model with RNN
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Vocoder: Flow based

> AF (autoregressive flow) and IAF (inverse autoregressive flow)
- Parallel inference of IAF student
= Parallel training of AF teacher
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Vocoder: GAN base

> MelGAN: Generator + Discriminator
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Vocoder: Diffusion based

> Diffusion probabilistic model
= Forward process: diffusion
= Reverse process: denoising

W\/M Wm/\ . Forward diffusion: Data -> Noise .

J; a: T £L &Zr
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- Reverse diffusion (neural network): Noise -> Data -

q(xr|rr—_1)
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Applications
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Applications
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Applications




Tools

> TTS open-source
= https://github.com/open-mmiab/Amphion

= https://github.com/coqui-ai/TTS

= https://github.com/espnet/espnet
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https://github.com/open-mmlab/Amphion
https://github.com/coqui-ai/TTS
https://github.com/espnet/espnet

Amphion: Generating audio, music and speech
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Yocoder

¢ (Objective comparison with existing toolkits. Eval on dev-test set of LibriTTS

Sampling

System PESQ(T) | FORMSE(!) Rate Data Steps GitHub
Ambhi LibriTTS
mp lon 3.55 1601.2 24khz LJSpeech 1.56M https://github.com/open-mmlab/Amphion
(HiIFIGAN)
VCTK
LibriTTS
HiFIGAN 3.4 229.35 22.05khz LJSpeech 2.5M https://github.com/jik876/hifi-gan
VCTK
ESPNet 3.55 199.17 24khz LibriTTS 2.5M | et avashl

ParallelWaveGAN
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https://github.com/open-mmlab/Amphion
https://github.com/jik876/hifi-gan
https://github.com/kan-bayashi/ParallelWaveGAN

TTS: Objective and subjective results

e Training data: LJSpeech

Speaker

System CER(]) | WER(]) | FAD(]) Similarity 1

MOS

Amphion

(VITS)

Coqui/TTS
(VITS) 0.06 0.12 0.54 0.98 3.69 +0.1

SpeechBrain
(Fastspeech2 )

0.06 0.11 1.71 0.94 3.54 £0.11

Tortoise-tts
(Diffusion-based model) | V-0 0.09 1.90 0.55 3.61 £0.11

ESPNet
(VITS) 0.07 0.11 1.28 0.99 3.57+0.11




TTS: FastSpeech?2

"> Recipe
= https://github.com/open-mmlab/Amphion/tree/main/egs/tts/FastSpeech?2
FastSpeech2 Recipe

In this recipe, we will show how to train FastSpeech2 using Amphion's infrastructure. FastSpeech2 is a non-autoregressive TTS architecture
that utilizes feed-forward Transformer blocks.

There are four stages in total:

1. Data preparation
2. Features extraction
3. Training

4. Inference

NOTE: You need to run every command of this recipe in the Amphion root path:

cd Amphion

1. Data Preparation

Dataset Download

You can use the commonly used TTS dataset to train TTS model, e.g., LIJSpeech, VCTK, LibriTTS, etc. We strongly recommend you use
LJSpeech to train TTS model for the first time. How to download dataset is detailed here.


https://github.com/open-mmlab/Amphion/tree/main/egs/tts/FastSpeech2

TTS: VITS

"> Recipe

= https://github.com/open-mmlab/Amphion/tree/main/egs/tts/VITS
VITS Recipe

@ HuggingFace [Spaces | X OpenXLab Apps

In this recipe, we will show how to train VITS using Amphion's infrastructure. VITS is an end-to-end TTS architecture that utilizes conditional
variational autoencoder with adversarial learning.

There are four stages in total:

1. Data preparation
2. Features extraction
3. Training

4. Inference

NOTE: You need to run every command of this recipe in the Amphion root path:

cd Amphion

1. Data Preparation

Dataset Download

You can use the commonly used TTS dataset to train TTS model, e.g., LIJSpeech, VCTK, Hi-Fi TTS, LibriTTS, etc. We strongly recommend
using LJSpeech to train single-speaker TTS model for the first time. While for training multi-speaker TTS model for the first time, we would
recommend using Hi-Fi TTS. The process of downloading dataset has been detailed here.


https://github.com/open-mmlab/Amphion/tree/main/egs/tts/VITS

Readings

" Interspeech 2022 TTS tutorial

= https://github.com/tts-tutorial/interspeech2022/blob/main/
INTERSPEECH_Tutorial TTS.pdf

"> Text-to-Speech Synthesis

= https://www.cambridge.org/core/books/texttospeech-synthesis/
D2C567CEF939C7D15B2F1232992C 7836

49


https://github.com/tts-tutorial/interspeech2022/blob/main/INTERSPEECH_Tutorial_TTS.pdf
https://github.com/tts-tutorial/interspeech2022/blob/main/INTERSPEECH_Tutorial_TTS.pdf
https://www.cambridge.org/core/books/texttospeech-synthesis/D2C567CEF939C7D15B2F1232992C7836
https://www.cambridge.org/core/books/texttospeech-synthesis/D2C567CEF939C7D15B2F1232992C7836

