Lecture 15: Voice Conversion

Zhizheng Wu



Agenda

> Recap

> Voice conversion

"> Cross-lingual voice conversion
> Singing voice conversion



Content




Speech representation




Timbre difference

> Each speaker has its unique speaker identity




Text to speech

> Generate an audible audio given a sequence of text

Text Text to speech (TTS) —N“.M'l'



The end-to-end problem we want to solve
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The two-stage pipeline
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The three-stage pipeline

Acoustic Waveform

— —

model generator

-3 Front end =

liInguistic
specification

NN of DT
Author of the... Author of the ...

ANVAT A

sil ao th er dh ax ...

text acoustic features waverform

AR ) T
R A it




Voice conversion

> Converting one speaker’s voice to sound like another speaker without changing

language content
Voice conversion —Nl“l'ﬂ'l'
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Voice conversion: three stages

Waveform
generator

Acoustic mode|

— Analysis




Voice conversion: Analysis

> Hand-crafted features
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Voice conversion: Analysis

> Using pretrained model

Next-token prediction
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Voice conversion: Acoustic model

Acoustic model




Voice conversion: Acoustic model

Acoustic model




Voice conversion: Acoustic model

> Weighted linear transformation
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Voice conversion: Acoustic model

> Nonlinear transformation

Non-linear Transformation
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Voice conversion: Acoustic model
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Voice conversion: Waveform generator

acoustic features )
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Artifacts of voice conversion

Source
HW» Analysis Regression

Target

o

Synthesis

 Short-time Fourier transform
(e.g. constant frequency/time
resolutions)

* Inaccuracy in pitch estimation

- Smoothing effect due to

statistical averaging

* Inaccuracy in statistical

modeling

- Distortion introduced by
vocoder/neural vocoder

« Upsampling

- Phase: 1) phase discontinuity
2) minimum phase vocoding




Cross-lingual voice conversion: Example
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Voice dubbing in a different language

» The original movie actor may not speak different languages
» A native voice actor is needed

* However the voice timber between the native voice actor and the original movie
actor is different
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What is Singing Voice Conversion (SVC)?

Inter-singer Conversion

Tc-ul‘or SwiHt DLurX

Professional Singerl Professional Singer2

Speaker

Cross-domain Conversion

Amateur Singer Professional Singer  [ntra-singer Conversion
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Parallel Singing Voice Conversion

Professional Singerl Professional Singer2

(Song1, Singer1) » (Song1, Singer2)

(Song2, Singer1) » (Song2, Singer2)

X

(SongN, Singer1) . (SongN, Singer2)

Parallel corpus is hard to collect!
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Non-Parallel Singing Voice Conversion

Tc-ul‘or Swfit DL X

Professional Singerl Professional Singer2

X Singer1’s Songs Singer2’s Songs

How to decouple the singer identity?
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Non-Parallel SVC: GAN School

as close as possible

LY Gy x -'iiiii

scalar: belongs to
speaker Y or not




Non-Parallel SVC: Auto-Encoder School

Lyric info
ge > Semantic Features

Melody info
Ep —> Prosody Features D —

Singing Voice Reconstructed
Singing Voice

Es  —» Speaker Features

® How to ensure the disentanglement of different features?

® How to ensure there is enough information of each features?
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Auto-Encoder VC: The Early Researches

AutoVC, ICML’19 v ..................................................................................................

Ee —> “Semantic” Features

Reconstructed
“Semantic” Features

Speech Speaker Features

Reconstructed
© One-hot Speaker ID Speech

o Features extracted from
speaker verification model

AutoVC: “To carefully design the dimension of the semantic features™
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Auto-Encoder SVC: The Early Researches

PitchNet, [CASSP’20 .| Adversarial | @ Singer classification loss
: Iraining ® FO regression loss

Ee —» “Semantic” Features

Prosody Features
D —
© Fundamental Frequency (F0)

Singing Voice Reconstructed
Singing Voice

e

Speaker Features

O One-hot Speaker ID

PitchNet: “Adopt adversarial training to disentangle better”
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Non-Parallel SVC: Auto-Encoder School

Automatic Speech
. oo e : Recognition (ASR)
Ee —> Semantic Features— [S¢mantic information| ,5 ap auxiliary task!

To obtain really

A
Ep —> Prosody Features b — -m-
Singing Voice Reconstructed
Singing Voice
£ —» Speaker Features
e How to ensure the disentanglement of different features? @ Solved to some extent

® How to ensure there is enough information of each features? RIS TAGE:LLIEETY
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Non-Parallel VC/SVC — a.k.a Recognition & Synthesis VC/SVC

a )

.m,,.—% ASR Model —> Text
\_ | W,

v
Using the intermediate output as “semantic-based” features

® Why do we use the dense semantic features instead of the symbolic text?

©® There are errors for the recognized symbolic text.

O It takes more time to obtain the symbolic text than just extracting dense features.

©® There are more acoustic information (such as pronunciation) in the dense features, which is better

for improving the intelligibility of the synthesized voice.
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Modern Singing Voice Conversion Pipeline

Reconstructed source

Semantic
Features *
I
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Prosody Condition Acoustic ik g s bz Waveform
| Features Encoder Model g £l £ o Synthesizer
M.l ..................... ; Mel Spectrogram
|
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Amphion SVC: Supported Model Architectures

e Semantic Features Extractor ® Acoustic Model
o WeNet, Whisper, ContentVec O Diffusion-based
o Joint Usage of Diverse Semantic o0 Transformer-based

Features Extractors
© VAE- and Flow-based

® Prosody Features
® Wavetorm Synthesizer

o F0 and energy o GAN-based
-base

® Speaker Features
o Diffusion-based

O One-hot Speaker ID

O Features of Pretrained SV model
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Al Singer Demo and Impact

Why mix

— —
System Naturalness (1) Similarity (1)
Ground Truth 4.67 £ 0.18 3.17 £ 0.29
FastSVC 1.02 4+ 0.04 1.23 £ 0.15
SoVITS 2.98 +£0.31 2.74 £ 0.31
Ours (Whisper + ContentVec) 3.52 +0.26 2.95 +0.30
Ours (WeNet + Whisper + ContentVec) 3.48 +£0.29 2.56 £ 0.35

Leveraging Content-based Features from Multiple Acoustic Models for Singing Voice Conversion

¢+ Make Taylor Swift sing Mandarin song! ¢ Our idea of using multiple content features
has been borrowed and integrated into So-

VITS-SVC 5.0 (Github over 2k stars)
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https://twitter.com/realamphion/status/1736755076348461448
https://github.com/PlayVoice/so-vits-svc-5.0#why-mix
https://github.com/PlayVoice/so-vits-svc-5.0#why-mix

Al Singer Demo and Impact

|
Sunny Madra
@sundeep

+ Highly positive comments from the market
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https://twitter.com/twistartups/status/1737567295025840188

Readings

" Interspeech 2022 TTS tutorial

= https://github.com/tts-tutorial/interspeech2022/blob/main/
INTERSPEECH_Tutorial VC.pdf

> Singing Voice Conversion

= https://www.zhangxueyao.com/data/SVC/tutorial.html
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https://github.com/tts-tutorial/interspeech2022/blob/main/INTERSPEECH_Tutorial_VC.pdf
https://github.com/tts-tutorial/interspeech2022/blob/main/INTERSPEECH_Tutorial_VC.pdf

