Lecture 15: Voice Conversion

Zhizheng Wu

Agenda

- Recap
- Voice conversion
- Cross-lingual voice conversion
- Singing voice conversion

Timbre

Speech representation

Timbre difference

Each speaker has its unique speaker identity

Text to speech

Generate an audible audio given a sequence of text

The end-to-end problem we want to solve

Author of the...

Author of the ...

The three-stage pipeline

linguistic text specification NN of of Author of the... the Author syl A syl₀ syl₀ ... sil ao th er ah

acoustic features

dh ax .9..

Voice conversion

Converting one speaker's voice to sound like another speaker without changing language content

Voice conversion: three stages

Voice conversion: Analysis

Hand-crafted features

Voice conversion: Analysis

Using pretrained model

Weighted linear transformation

X' = WX

Nonlinear transformation

Nonlinear transformation

Voice conversion: Waveform generator

acoustic features

Artifacts of voice conversion

Cross-lingual voice conversion: Example

21

Voice dubbing in a different language

- The original movie actor may not speak different languages
- A native voice actor is needed
- actor is different

However the voice timber between the native voice actor and the original movie

What is Singing Voice Conversion (SVC)?

Professional Singer1

Professional Singer2

Amateur Singer

Professional Singer

Inter-singer Conversion

Speaker

Singer

Cross-domain Conversion

Intra-singer Conversion

Parallel Singing Voice Conversion

X

Professional Singer1

(Song1, Singer1)

(Song2, Singer1)

(SongN, Singer1)

Professional Singer2

Y

Parallel corpus is hard to collect!

Non-Parallel Singing Voice Conversion

Professional Singer1

How to decouple the singer identity?

Professional Singer2

gs Singer2's Songs

Non-Parallel SVC: GAN School

Credit: Voice Conversion, Hung-yi Lee.

Non-Parallel SVC: Auto-Encoder School

How to ensure the disentanglement of different features? • How to ensure there is enough information of each features?

Auto-Encoder VC: The Early Researches

AutoVC: "To carefully design the dimension of the semantic features"

Auto-Encoder SVC: The Early Researches

Non-Parallel SVC: Auto-Encoder School

30

Non-Parallel VC/SVC — a.k.a Recognition & Synthesis VC/SVC

Why do we use the dense semantic features instead of the symbolic text?

- There are errors for the recognized symbolic text. (1)
- It takes more time to obtain the symbolic text than just extracting dense features. 2
- 3 for improving the intelligibility of the synthesized voice.

There are more acoustic information (such as pronunciation) in the dense features, which is better

Modern Singing Voice Conversion Pipeline

Amphion SVC: Supported Model Architectures

- Semantic Features Extractor
 - WeNet, Whisper, ContentVec
 - Joint Usage of Diverse Semantic Features Extractors
- Prosody Features
 - F0 and energy
- Speaker Features
 - One-hot Speaker ID
 - Features of Pretrained SV model

- Acoustic Model
 - Diffusion-based
 - Transformer-based
 - VAE- and Flow-based
- Waveform Synthesizer
 - GAN-based
 - Diffusion-based

AI Singer Demo and Impact

Make Taylor Swift sing Mandarin song!

• Our idea of using multiple content features has been borrowed and integrated into <u>So-</u> VITS-SVC 5.0 (Github over 2k stars)

AI Singer Demo and Impact

• Highly positive comments from the market

Readings

- Interspeech 2022 TTS tutorial
 - https://github.com/tts-tutorial/interspeech2022/blob/main/ INTERSPEECH_Tutorial_VC.pdf
- Singing Voice Conversion
 - https://www.zhangxueyao.com/data/SVC/tutorial.html