CSC3160 - Fundamentals of Speech and Language Processing

Lecture 3: Basics of digital signal processing

Zhizheng Wu

- Time domain vs frequency domain
- Basic of signal processing

Sampling

Sampling

generates a sequence of measured values

Sampling takes measurements of a continuous waveform at regular intervals and

Sampling rate

Sampling rate = 1 / Sampling period

Comparison of different sampling rates

4k Hz
8k Hz
16k Hz
22.05k Hz
48k Hz

Signal

Windowing for analysis

- A signal of a sound/speech/music is a sequence of acoustic events/words/lyrics etc. The signal of a sound/speech/music is time-variant in character.
- To extract information from a signal, we must therefore split the signal into sufficiently short segments
- Extract segments which are short enough that the properties of the sound/speech/ music signal does not have time change within that segment.
- Windowing is a classical method in signal processing and it refers to splitting the input signal into temporal segments

Windowing

- The straightforward windowing is to apply a rectangular window
- The borders of segments are then visible as discontinuities, which are incongruent with the real-world signal

Windowing for analysis

- Windowing functions are smooth functions which go to zero at the borders
- Hanning window as an example

Windowing for analysis

- Windowing
- Windowing does change the signal

By multiplying the input signal with a window function, the windowing function also goes to zero at the border such that the discontinuity at the border becomes invisible.

Live demo

Windowing: Framing

- Hop size/Frame shift
- Window size

Convolution

- Convolution is a mathematical way of combining two signals to form a third signal. It is the single most important technique in Digital Signal Processing.
- Using the strategy of impulse decomposition, systems are described by a signal called the impulse response.

N–1 $(f * g)[n] = \sum f[m] g[n-m]$ m=0

Convolution

Convolution

From time domain to frequency domain

Frequency-domain representation

Frequency

Frequency analysis

Summary

- Review of sampling and sampling rate
- Windowing and framing
- Convolution
- Time frequency representation