CSC3160 - Fundamentals of Speech and Language Processing

Lecture 5: Speech representation

Zhizheng Wu https://drwuz.com/CSC3160/

Outline

- Information in human speech
- Speech production
- Source filter model
- Timbre
- Prosody

Timbre

Waveform

4

Prosody

- Pitch
- Loudness
- Duration: Length of each segment (phone, syllable, word, phrase, etc)

Pitch

- Pitch is the perception of fundamental frequency
- Pitch describes how our ears and brains interpret the signal

Fundamental frequency

- F0 of an individual speaker depends primarily on the length of the vocal folds F0 describes the actual physical phenomenon
- Typically F0 range 80 to 450 Hz

Fundamental frequency

- L: period length
- ► F0 = 1 / L

Fundamental frequency

► F₀ and harmonics k*F*₀

No F0 for unvoiced region

Voiced region

https://colab.research.google.com/drive/1j707gmlYED8roAICb1Re-waULZ4DYWk6?usp=sharing

Intonation

- a speaker's voice.
- are used.

Intonation is a complex system of meaning communicated through the rise and fall of

Intonation can change the meaning of what a person says even when the same words

Intonation

https://www.uts.edu.au/current-students/support/helps/self-help-resources/pronunciation/intonation 12

mmunicative purpose and function	Audio
formation. You are certain and confident about	
ould indicate that this is a question even though icates a statement. It could also indicate that r that you haven't finished yet.	
phasise this. Depending on the context, you may , happy or surprised. Or you may want to ongly with what someone else has said.	

Intonation

avery_sweet.wav

Tonal language: different tonal inflections will convey different meanings

Duration

- words
- tasks
 - Speech recognition
 - Text-to-speech synthesis
 - etc

Duration of speech sounds can help to convey meaning and differentiate between

Duration and boundaries of speech units are important feature for many downstream

Duration

Ma

Duration

Duration at different semantic levels

Energy

- Energy or intensity determines the loudness
- Loudness is perception of intensity or energy

Jitter and shimmer

- Jitter: Variations in signal frequency
- Shimmer: Variations in signal amplitude

Jitter and shimmer

- Jitter and shimmer are caused by irregular vocal fold vibration
 - Perceived as roughness, breathiness, or hoarseness in a speaker's voice
 - Measuring them is a common way to detect voice pathologies
- Personal habits such as smoking or alcohol consumption might increase the level of jitter and shimmer in voice

Jitter

A common way: Average absolute difference between consecutive periods

Jitter(absolute) =

$$rac{1}{N-1}\sum_{i=1}^{N-1}\|T_i-T_{i+1}\|$$

- Ti are the extracted F0 period lengths and N is the number of extracted F0 periods

Shimmer

The difference between the amplitudes of consecutive periods multiplied by 20

$$Shimmer(dB) = rac{1}{N-1}\sum_{i=1}^{N-1} \|20\log(A_{i+1}/A_i)\|$$

fundamental frequency periods

- Ai are the extracted peak-to-peak amplitude data and N is the number of extracted

Spectrogram

Mel scale

from one another

Mel scale is a perceptual scale of pitches judged by listeners to be equal in distance

 $m = 2595 \log_{10} \left(1 + \frac{f}{700} \right)$

Mel scale

Mel scale

Demo: Mel-scale from 200 to 1500, in intervals of 50

Mel filterbank

Cepstrum

- The output after the second time-frequency transform is known as the cepstrum
 - Apply analysis windowing to signal
 - Apply time-frequency transform (DFT or DCT)
 - Take the logarithm of the absolute value
 - Apply second time-frequency transform

Cepstrum

Cepstrum

- F0 is usually prominently visible as a peak in the cepstrum
- Quefrencies q can be easily converted to frequencies f by f = 1 / q

Spectrogram zoomed to 8 kHz

eak in the cepstrum to frequencies f by f = 1 / q

Summary

- Prosody
 - Pitch Fundamental frequency
 - Loudness Energy
 - Duration
- Jitter and Shimmer
- Spectrogram
- Cepstrum

Readings

- Chapter 3: Basic Representations

- https://speechprocessingbook.aalto.fi/Representations/Representations.html