# Lecture 8: Text processing and regular expression

Zhizheng Wu

## Logistics

- Assignment 1 due: tonight
- Assignment 2 due: Feb 28





## Agenda

- Recap
- Text normalization
- Edit distance
- Regular expression

#### Timbre





https://sail.usc.edu/~lgoldste/General\_Phonetics/Source\_Filter/MATLAB\_demo/source-filter.html



### From spoken language to written language

年七隆乾 鐫 育 浦唐莱 殺 莊子集 调 3 註 解 嗣 出

一个机器是否具备人类的语言能力,本身就是一个比较难判断的问题 吧? 按照语言学区分competence和performance的考虑,机器和人,在测 试语言能力方面的范式是一样的,总是用performance去估计 competence。所以,真正的"语言能力",大概也只能是一种"感觉"吧。 chatgpt现在的表现,应该是让很多人"觉得"它掌握了语言。人们似乎还没有 想出比图灵测试更高明的方法,来判断机器是否具有语言能力。

霄云: 图灵测试 is not for language only, it is end to end "common sense " test, human intelligence via language.

卫东:是的。它包含了语言能力。

南山: 所以纠结机器是否智能在可预见未来是无解的,相关的判别标准和概 念大家都没有清晰、一致,对于chatgpt、alphzero这类,看疗效才是王 道。

霄云: 单独测 language 是不是 翻译 或者别的 normalization 就可以? @ 詹卫东

hop\_length is in ms? For task2...

#### Read more

↑ 1 😳



(↑ 1) 😳

#### How can I submit my assignment?

I know it is a dumb question :( But I want to check again that, should I just replace the "assignment\_1.ipynb" in my private project or something else?



#### ↑ Share Is the hop\_length matches the frameshift and the win\_size matches the window size? And if the



WhiteEurya (Collaborator) posted in 💬 General · yesterday



□ 1 comment



#### Corpora

- Words don't appear out of nowhere
- Any particular piece of text is produced
  - by one or more specific speakers or writers
  - in a specific dialect of a specific language
  - at a specific time
  - in a specific place
  - for a specific function

## **Corpora along multiple dimensions**

- Language: English, Chinese, etc
- Genre: Fiction, Scientific articles, Twitter, etc.
- Author Demographics: writer's age, gender, etc
- Code switching: e.g. English/Chinese
- Variety: organization vs organisation

#### **Corpus: tokens vs vocabulary**

- Type: an element of the vocabulary
- Token: an instance of that type in running text

| Dataset      | # tokens    | Proportion<br>within training |  |
|--------------|-------------|-------------------------------|--|
| Common Crawl | 410 billion | 60%                           |  |
| WebText2     | 19 billion  | 22%                           |  |
| Books1       | 12 billion  | 8%                            |  |
| Books2       | 55 billion  | 8%                            |  |
| Wikipedia    | 3 billion   | 3%                            |  |

#### **GPT-3 training data**

#### How many words in a sentence?

How many? Tokens: 15 Types: 13

#### they lay back on the San Francisco grass and looked at the stars and their

#### **Text normalization**

- Normalizing text into standard format
- Every NLP task requires text normalization
  - Tokenizing (segmenting) words
  - Normalizing word formats
  - Segmenting sentences

## Word tokenization

Splitting a text into separate words, or tokens, while preserving the meaning of the text

- Examples
  - I can't believe it's 2023 already!
    - Tokens: ["I", "can't", "believe", "it's", "2023", "already!"]
  - Let's meet at 7 PM at the café.
    - Tokens: ["Let's", "meet", "at", "7", "PM", "at", "the", "café."]

#### Word tokenization

["the", "Rock", "'n'", "Roll", "Brooklyn", "Half", "Marathon", "course", "in", "Brooklyn,", "New", "York"]

["the", "Rock 'n' Roll", "Brooklyn", "Half", "Marathon", "course", "in", "Brooklyn,", "New York"]

#### the Rock 'n' Roll Brooklyn Half Marathon course in Brooklyn, New York



## Word tokenization <

| 9:41                                                         | :                         | ·•• ≈ III.   |  |  |  |  |  |  |  |
|--------------------------------------------------------------|---------------------------|--------------|--|--|--|--|--|--|--|
|                                                              |                           |              |  |  |  |  |  |  |  |
|                                                              | Janelle >                 |              |  |  |  |  |  |  |  |
|                                                              | iMessage<br>Today 9:40 AM |              |  |  |  |  |  |  |  |
| Hi! Do you have plans tonight?                               |                           |              |  |  |  |  |  |  |  |
|                                                              |                           | 25           |  |  |  |  |  |  |  |
|                                                              |                           | NP I         |  |  |  |  |  |  |  |
|                                                              |                           | Delivered    |  |  |  |  |  |  |  |
|                                                              |                           |              |  |  |  |  |  |  |  |
| finishes at 5. Then pizza or tacos? Maybe watch a movie. You |                           |              |  |  |  |  |  |  |  |
|                                                              |                           |              |  |  |  |  |  |  |  |
| λ Search Em                                                  | oji                       |              |  |  |  |  |  |  |  |
| QUENTLY USED                                                 |                           | SMILEYS & PE |  |  |  |  |  |  |  |
| 9 🔮 🚱                                                        | . 😏 😏                     | M 😀 🥹        |  |  |  |  |  |  |  |
| 5 😔 🔞                                                        | ) 😔 😔 🤅                   | . 😃 🥶        |  |  |  |  |  |  |  |
| 💃 👌 🧉                                                        | ) 😳 👱 (                   |              |  |  |  |  |  |  |  |
| 🗟 🙃 💣                                                        |                           | 😴 😁 😏        |  |  |  |  |  |  |  |
|                                                              |                           |              |  |  |  |  |  |  |  |
|                                                              |                           |              |  |  |  |  |  |  |  |
|                                                              |                           | .0.          |  |  |  |  |  |  |  |
| ABC                                                          |                           | Ŷ            |  |  |  |  |  |  |  |

## Tokenization in languages without spaces

- Many languages (e.g. Chinese) don't use spaces to separate words
- How do we decide where the token boundaries should be?
- Chinese as an example
  - 乒乓球拍卖完了

#### Chinese word segmentation

乒乓球拍卖完了

乒乓球拍/卖完了

乒乓球/拍卖/完了

#### Chinese word segmentation

姚明进入总决赛

姚明 进入 总决赛

姚明进入总决赛

姚明进入总决赛

#### Word tokenization: Out-Of-Vocabulary





## Subword tokenization

- Definition: tokens are smaller than words. Subwords can be arbitrary substrings
- Tokenization schemes:
  - Token learning
  - Token segmenter
- Three algorithms
  - Byte-pair encoding
  - Unigram language modeling
  - Wordpiece



## **Byte-pair encoding**

Originally proposed for lossless data compression

aaabdaaabac aaabdaaabac ZabdZabac ZabdZabac ac

#### Replace aa with Z Replace ab with Y Replace ab with Y

## **BPE algorithm**

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

 $V \leftarrow$  all unique characters in C # initial set of tokens is characters for i = 1 to k do  $t_L, t_R \leftarrow \text{Most frequent pair of adjacent tokens in } C$  $t_{NEW} \leftarrow t_L + t_R$  $V \leftarrow V + t_{NFW}$ return V

# merge tokens k times # make new token by concatenating # update the vocabulary Replace each occurrence of  $t_L$ ,  $t_R$  in C with  $t_{NEW}$  # and update the corpus



#### **BPE for subword tokenization**





#### **BPE for subword tokenization**

#### Merge (ne, w) (I, O)(lo, w) (new, er\_) (low, \_)

#### **Current vocabulary**

- \_, d, e, i, l, n, o, r, s, t, w, er, er\_, ne, new
- \_, d, e, i, l, n, o, r, s, t, w, er, er\_, ne, new, lo
- \_\_, d, e, i, l, n, o, r, s, t, w, er, er\_, ne, new, lo, low
- \_, d, e, i, l, n, o, r, s, t, w, er, er\_, ne, new, lo, low, newer\_
- \_, d, e, i, l, n, o, r, s, t, w, er, er\_, ne, new, lo, low, newer\_, low\_

## **Applying BPE**

The word: 'lower'

- lower\_
- lower\_
- lower\_
- lo w er\_
- low er\_

#### Word normalization

with multiple forms like USA and US.

# CUHK-SZ, CUHK(SZ), CUHKSZ, CUHK-Shenzhen

A task to put word into a standard format, choosing a single normal form for words

**CUHK-Shenzhen** 

#### Sentence segmentation

- Cut long text into individual sentences
- The most useful cues:
  - Punctuation (e.g. periods, question marks, and exclamation points)
  - marker of abbreviations like Mr. or Inc.

- The period character "." is ambiguous between a sentence boundary marker and a

#### How similar are two strings?

- Given a word 'coleague', which is the closest?
  - Colleague
  - College
  - Colegio
  - . . .

## Minimum Edit distance

- Edit distance gives us a way to quantify string similarity
- Edit operations
  - Insertion
  - Deletion
  - Substitution
- Minimum edit distance
  - substitution) needed to transform one string into another

- the minimum number of editing operations (operations like insertion, deletion,

## Alignment

- An alignment is a correspondence between substring of two sequences The minimum edit distance can be represented as an alignment

#### INTE\*NTION \* E X E C U T I O N dss is

d: deletion s: substitution

i: insertion

#### Minimum edit distance

- Initialization
  - D(i, 0) = i
  - D(0, j) = j
- Recurrence relation
  - For i = 1...M

For j = 1...N

Termination
D(N, M) is distance

2; if X(i) ≠ Y(j) 0; if X(i) = Y(j)

1 1 +

#### Edit distance table

|   | Μ | Ο | Ν | Κ | Ε | Y |
|---|---|---|---|---|---|---|
| Μ | 0 | 1 | 2 | 3 | 4 | 5 |
| Ο | 1 | 0 | 1 | 2 | 3 | 4 |
| Ν | 2 | 1 | 0 | 1 | 2 | 3 |
| Ε | 3 | 2 | 1 | 2 | 1 | 2 |
| Y | 4 | 3 | 2 | 3 | 2 | 1 |

#### **Regular expression**

A sequence of characters that specifies a *pattern* in text

- Someone@cuhk.edu.cn
- Someone@stanford.edu
- Someone@mit.edu
- Someone@ntu.edu.tw
- Someone@ntu.edu.sg

#### **Regular expression**

Someone@cuhk.edu.cn Someone@stanford.edu Someone@mit.edu Someone@ntu.edu.tw

#### **REGULAR EXPRESSION**

#### **TEST STRING**

Someone<mark>@cuhk.edu</mark>.cn↩

```
Someone<mark>@</mark>stanford.edu</mark>↩
```

```
Someone@ntu.edu.tw↩
```

```
someone@gmail.com
```

## To practice: https://regex101.com/

## Summary

- Every NLP task requires text normalization
  - Tokenizing (segmenting) words
  - Normalizing word formats
  - Segmenting
- Minimum edit distance
- Regular expression