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Logistics
‣ Assignment 1 due: tonight
‣ Assignment 2 due: Feb 28



Agenda
‣ Recap
‣ Text normalization
‣ Edit distance
‣ Regular expression



Content

Timbre Prosody
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https://sail.usc.edu/~lgoldste/General_Phonetics/Source_Filter/MATLAB_demo/source-filter.html



From spoken language to written language





Corpora
‣ Words don’t appear out of nowhere
‣ Any particular piece of text is produced

- by one or more specific speakers or writers
- in a specific dialect of a specific language
- at a specific time
- in a specific place
- for a specific function



Corpora along multiple dimensions
‣ Language: English, Chinese, etc
‣ Genre: Fiction, Scientific articles, Twitter, etc
‣ Author Demographics: writer's age, gender, etc
‣ Code switching: e.g. English/Chinese
‣ Variety: organization vs organisation 



Corpus: tokens vs vocabulary 
‣ Type: an element of the vocabulary
‣ Token: an instance of that type in running text



How many words in a sentence?

they lay back on the San Francisco grass and looked at the stars and their

How many? 
Tokens: 15 
Types: 13



Text normalization
‣ Normalizing text into standard format

‣ Every NLP task requires text normalization
- Tokenizing (segmenting) words
- Normalizing word formats
- Segmenting sentences



Word tokenization
‣ Splitting a text into separate words, or tokens, while preserving the meaning of the 

text

‣ Examples
- I can't believe it's 2023 already!

• Tokens: ["I", "can't", "believe", "it's", "2023", “already!"]
- Let's meet at 7 PM at the café.

• Tokens: ["Let's", "meet", "at", "7", "PM", "at", "the", “café."]



Word tokenization

the Rock 'n' Roll Brooklyn Half Marathon course in Brooklyn, New York

["the", "Rock", "'n'", "Roll", "Brooklyn", "Half", "Marathon", "course", "in", "Brooklyn,", "New", "York"]

["the", “Rock ’n' Roll", "Brooklyn", "Half", "Marathon", "course", "in", "Brooklyn,", “New York"]



Word tokenization



Tokenization in languages without spaces
‣ Many languages (e.g. Chinese) don’t use spaces to separate words
‣ How do we decide where the token boundaries should be?

‣ Chinese as an example
- 乒乓球拍卖完了



Chinese word segmentation

乒乓球拍卖完了

乒乓球拍/卖完了

乒乓球/拍卖/完了



Chinese word segmentation

姚明进⼊总决赛

姚明   进⼊   总决赛

姚   明   进⼊   总  决赛

姚   明   进   ⼊   总  决   赛



Word tokenization: Out-Of-Vocabulary

low 
new 

newer 
high 

higher

low 
lower 
new 

newer 
high 

higher



Subword tokenization
‣ Definition: tokens are smaller than words. Subwords can be arbitrary substrings 

‣ Tokenization schemes: 
- Token learning
- Token segmenter 

‣ Three algorithms
- Byte-pair encoding
- Unigram language modeling
- Wordpiece



Byte-pair encoding
‣ Originally proposed for lossless data compression

aaabdaaabac
Replace aa with Zaaabdaaabac
Replace ab with YZabdZabac
Replace ab with YZabdZabac

ZYdZYac

…



BPE algorithm



BPE for subword tokenization

5    l o w _ 
2    l o w e s t _ 
6    n  e w e r _ 
3    w i d e r _ 
2    n e w _

_, d, e, i, l, n, o, r, s, t, w 

5    l o w _ 
2    l o w e s t _ 
6    n  e w er _ 
3    w i d er _ 
2    n e w _

_, d, e, i, l, n, o, r, s, t, w, er

5    l o w _ 
2    l o w e s t _ 
6    n  e w er_ 
3    w i d er_ 
2    n e w _

_, d, e, i, l, n, o, r, s, t, w, er, er_

5    l o w _ 
2    l o w e s t _ 
6    ne w er_ 
3    w i d er_ 
2    ne w _

_, d, e, i, l, n, o, r, s, t, w, er, er_, 
ne



BPE for subword tokenization

Merge                 Current vocabulary
(ne, w)                _, d, e, i, l, n, o, r, s, t, w, er, er_, ne, new
(l, o)                    _, d, e, i, l, n, o, r, s, t, w, er, er_, ne, new, lo
(lo, w)                 _, d, e, i, l, n, o, r, s, t, w, er, er_, ne, new, lo, low
(new, er_)           _, d, e, i, l, n, o, r, s, t, w, er, er_, ne, new, lo, low, newer_
(low, _)               _, d, e, i, l, n, o, r, s, t, w, er, er_, ne, new, lo, low, newer_, low_



Applying BPE
‣ The word: ‘lower’

l o w e r _
l o w er _
l o w er_
lo w er_
low er_



Word normalization
‣ A task to put word into a standard format, choosing a single normal form for words 

with multiple forms like USA and US.

CUHK-SZ, CUHK(SZ), CUHKSZ, CUHK-Shenzhen 

CUHK-Shenzhen 



Sentence segmentation
‣ Cut long text into individual sentences
‣ The most useful cues:

- Punctuation (e.g. periods, question marks, and exclamation points)

- The period character “.” is ambiguous between a sentence boundary marker and a 
marker of abbreviations like Mr. or Inc.



How similar are two strings?
‣ Given a word ‘coleague’, which is the closest?

- Colleague
- College 
- Colegio
- …



Minimum Edit distance
‣ Edit distance gives us a way to quantify string similarity
‣ Edit operations

- Insertion 
- Deletion
- Substitution

‣ Minimum edit distance
- the minimum number of editing operations (operations like insertion, deletion, 

substitution) needed to transform one string into another



Alignment
‣ An alignment is a correspondence between substring of two sequences
‣ The minimum edit distance can be represented as an alignment

d: deletion
s: substitution
i: insertion
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example comes from coreference, the task of deciding whether two strings such as
the following refer to the same entity:

Stanford President Marc Tessier-Lavigne
Stanford University President Marc Tessier-Lavigne

Again, the fact that these two strings are very similar (differing by only one word)
seems like useful evidence for deciding that they might be coreferent.

Edit distance gives us a way to quantify both of these intuitions about string sim-
ilarity. More formally, the minimum edit distance between two strings is definedminimum edit

distance
as the minimum number of editing operations (operations like insertion, deletion,
substitution) needed to transform one string into another.

The gap between intention and execution, for example, is 5 (delete an i, substi-
tute e for n, substitute x for t, insert c, substitute u for n). It’s much easier to see
this by looking at the most important visualization for string distances, an alignmentalignment

between the two strings, shown in Fig. 2.14. Given two sequences, an alignment is
a correspondence between substrings of the two sequences. Thus, we say I aligns
with the empty string, N with E, and so on. Beneath the aligned strings is another
representation; a series of symbols expressing an operation list for converting the
top string into the bottom string: d for deletion, s for substitution, i for insertion.

I N T E * N T I O N
| | | | | | | | | |
* E X E C U T I O N
d s s i s

Figure 2.14 Representing the minimum edit distance between two strings as an alignment.
The final row gives the operation list for converting the top string into the bottom string: d for
deletion, s for substitution, i for insertion.

We can also assign a particular cost or weight to each of these operations. The
Levenshtein distance between two sequences is the simplest weighting factor in
which each of the three operations has a cost of 1 (Levenshtein, 1966)—we assume
that the substitution of a letter for itself, for example, t for t, has zero cost. The Lev-
enshtein distance between intention and execution is 5. Levenshtein also proposed
an alternative version of his metric in which each insertion or deletion has a cost of
1 and substitutions are not allowed. (This is equivalent to allowing substitution, but
giving each substitution a cost of 2 since any substitution can be represented by one
insertion and one deletion). Using this version, the Levenshtein distance between
intention and execution is 8.

2.5.1 The Minimum Edit Distance Algorithm
How do we find the minimum edit distance? We can think of this as a search task, in
which we are searching for the shortest path—a sequence of edits—from one string
to another.

The space of all possible edits is enormous, so we can’t search naively. However,
lots of distinct edit paths will end up in the same state (string), so rather than recom-
puting all those paths, we could just remember the shortest path to a state each time
we saw it. We can do this by using dynamic programming. Dynamic program-dynamic

programming
ming is the name for a class of algorithms, first introduced by Bellman (1957), that



Minimum edit distance
‣ Initialization
    D(i, 0) = i
    D(0, j) = j
‣ Recurrence relation
     For i = 1…M 
            For j = 1…N 

‣ Termination
    D(N, M) is distance



Edit distance table

M O N K E Y

M 0 1 2 3 4 5

O 1 0 1 2 3 4

N 2 1 0 1 2 3

E 3 2 1 2 1 2

Y 4 3 2 3 2 1



Regular expression
‣ A sequence of characters that specifies a pattern in text

Someone@cuhk.edu.cn

Someone@stanford.edu

Someone@mit.edu

Someone@ntu.edu.tw

Someone@ntu.edu.sg



Regular expression

Someone@cuhk.edu.cn

Someone@stanford.edu

Someone@mit.edu

Someone@ntu.edu.tw

Someone@ntu.edu.sg



To practice: https://regex101.com/



Summary
‣ Every NLP task requires text normalization

- Tokenizing (segmenting) words
- Normalizing word formats
- Segmenting 

‣ Minimum edit distance
‣ Regular expression


