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Abstract
Recently, exemplar-based sparse representation methods have
been proposed for voice conversion. These methods reconstruct
a target spectrum through a weighted linear combination from a
set of basis spectra, called exemplars. To include temporal con-
straint, multiple-frame exemplars are employed when estimat-
ing the linear combination weights, namely activations, by the
nonnegative matrix factorization technique with a sparsity con-
straint. In practice, low-resolution mel-scale filter bank energies
rather than high-resolution spectra are employed to estimate the
activations in order to reduce computational cost and memory
usages. However, the conversion performance degrades due to
the loss of the spectral details in the low-resolution represen-
tations. In this study, we propose a joint nonnegative matrix
factorization technique to estimate the activations using both
the low- and high-resolution features simultaneously. In this
way, we include temporal information by using multiple-frame
low-resolution exemplars for computational efficiency and one-
frame high-resolution exemplars to improve spectral details at
the same time. The VOICES database was employed to assess
the performance of the proposed method. The experiments con-
firmed the effectiveness of the proposed method over conven-
tional nonnegative matrix factorization method in term of both
objective spectral distortion and subjective evaluation.
Index Terms: Voice conversion, exemplar, sparse representa-
tion, nonnegative matrix factorization, joint nonnegative matrix
factorization

1. Introduction
The objective of voice conversion is to change the paralinguistic
information such as speaker individuality in the speech signal of
one speaker (source) to match that of another speaker (target),
while keeping the language content. This technique can be used
for personalizing text-to-speech [1], speaking-aid [2, 3], spoof-
ing attack [4] and other applications [5, 6]. One of the most
important problems for voice conversion is how to build a ro-
bust conversion function. As the spectral attributes which relate
to voice timbre contain significant speaker individuality infor-
mation, the majority of the past work focused on the spectral
feature mapping, which is also the focus of this study.

A large number of methods have been proposed to imple-
ment flexible spectral mapping functions. These methods im-
plement linear conversion functions as well as nonlinear con-
version function. Gaussian mixture model [7] and partial least
squares regression [8] based methods are examples to imple-
ment linear mapping functions, assuming the source and tar-
get features have a linear relationship. Nonlinear conversion
methods such as these implemented by neural network [9] and
kernel partial least squares regression [10] assume that there
is a nonlinear relationship between source and target features.
These methods are generally efficient in converting the speaker

identity. However, low-resolution spectral features such as
Mel-cepstral coefficients (MCCs) and Line spectral frequen-
cies (LSFs) are usually adopted to represent the high-resolution
spectra, and the spectral details are lost during the dimension-
ality reduction process. In addition, these methods attempt
to minimize the spectral distance between source and target
features on the training data, and this optimization objective
will lead to mapping functions that captures the average of the
spectra. Thus, these methods usually generate over-smoothed
speech that sounds unnatural.

Recently, an alternative nonparametric framework, namely
exemplar-based sparse representation, have been proposed to
model the high-resolution spectra directly for voice conver-
sion [11, 12, 13]. This class of method assumes that a target
spectrogram can be generated from a small set of basis target
spectra, namely exemplars, through a weighted linear combi-
nation. Acoustically aligned source-target exemplars from the
training data are stored in the coupled source-target dictionar-
ies, and they are assumed to be able to share the same linear
combination weights, also called activations, to approximate
the source-target spectrograms. At run time, the activations
for each source spectrogram/utterance are estimated from the
source dictionary, and then applied to the target dictionary to
generate the corresponding target spectrogram. In this way, the
target spectrogram is generated from the real target speech ex-
emplars rather than generated from model parameters. In order
to include the temporal contextual constraint, multiple-frame
exemplars are used in the source dictionary. If high-resolution
features are employed in the source exemplars, the computa-
tional cost is considerably high when the window size of an
exemplar is large. In the previous work [12], the low-resolution
features, namely Mel-scale filter bank energies derived from the
high-resolution spectra, were adopted in the source dictionary
to reduce computational cost and memory usage. However, the
conversion performance drops as the spectral details are lost to
some degree.

To address this issue, in this study we propose a joint op-
timization technique to estimate the activation weights taking
both the low-resolution and the high-resolution features into
consideration simultaneously. With the low-resolution features,
we can include the temporal constraint without significantly
increasing the computational cost and the memory usage too
much, whereas the spectral details can be taken into account by
using the high-resolution spectra. In practice, the nonnegative
matrix factorization with a sparsity constraint technique is em-
ployed to find the activation weights, and we hence call the pro-
posed method as joint nonnegative matrix factorization, which
minimizes the joint spectral distance of the low-resolution and
high-resolution features simultaneously. Similar to the previous
work, the same activation weights are applied to the coupled
target dictionary to generate the target spectrogram.



2. Conventional nonnegative matrix
factorization for voice conversion

Recently, to model high-resolution spectra for spectral details,
exemplar-based sparse representation is proposed for voice con-
version in [11, 12]. The basic idea of such exemplar-based
methods is to represent a spectrum as a weighted linear combi-
nations of a limited set of basis spectra, and can be formulated
as

x(DFT) ≈
N∑

n=1

a(DFT)
n · hn = A(DFT)h, (1)

where x(DFT) ∈ Rp×1 is the high-resolution spectrum, N
is the total number of speech segments, called exemplars,
A(DFT) = [a

(DFT)
1 ,a

(DFT)
2 , · · · ,a(DFT)

N ] ∈ Rp×N is the dic-
tionary consisting of exemplars extracted from the source train-
ing data, a(DFT)

n is the nth speech exemplar which has the same
dimension as x(DFT), h = [h1, h2, · · · , hN ] ∈ RN×1 is the
vector consisting of nonnegative weights, also called activation
vector and hn is the activation weight of the nth speech exem-
plars.

As each frame of a spectrum can be modeled independently
using the same dictionary, we can therefore represent the spec-
trogram of a source utterance as

X(DFT) ≈ A(X)H, (2)

where X(DFT) ∈ Rp×M is the high-resolution source spectro-
gram, M is the number of frame in the source utterance and
H ∈ RN×M is the activation matrix, the column vector of
which is the activation vector as presented in Eq. (1).

Similar to the source spectrogram, the target spectrogram
can also be represented by the target dictionary with corre-
sponding activation weights. However, at runtime, the target
spectrogram is not available, and the target dictionary and the
activations estimated from the source spectrogram are used to
find the target spectrogram. It is assumed that the coupled
source-target dictionaries with acoustically aligned exemplars
can share the same activation weights. In this way, the target
spectrogram can be generated by

Ŷ(DFT) = B(DFT)H, (3)

where Ŷ(DFT) ∈ Rq×M is the generated target spectrogram,
and B(DFT) ∈ Rq×N is the dictionary consisting of the target
speech exemplars extracted from the target training data. Note
that each column vector of the target dictionary is acoustically
aligned with that of the source dictionary from the same entry.

As only the source information is available at runtime, we
need to solve Eq. (2) to find the activation weights. In practice,
due to the nonnegative nature of the spectrogram, the nonnega-
tive matrix factorization (NMF) technique [14, 15] is adopted to
estimate the activation matrix H, which is found by minimizing
the following objective function:

H = arg min
H≥0

d(X(DFT),A(DFT)H) + λ‖H‖1, (4)

where λ is the parameter to control the sparsity of the activa-
tion matrix, and d(X(DFT),A(DFT)H) is the spectral distance
between the reference and the reconstructed source spectro-
grams. In practice, the generalized Kullback-Leibler divergence
(KLD) [16] is employed to implement the spectral distance, as
the KLD is found to be efficient in the noise robust automatic
speech recognition research [15].

By minimizing the objective function of Eq. (4), we can
derive the following multiplicative updating rule:

H← H⊗
A(DFT)> X(DFT)

A(DFT)H

A(DFT)> + λ
, (5)

where ⊗ indicates element-wise multiplication and the divi-
sions are also element-wise. In [15], it is proved that the mul-
tiplicative updating rule can be applied iteratively to minimize
the objective function as presented in Eq. (4).

In order to include temporal information, in our previous
work [12], a frame stacking approach was proposed. In this
method, multiple consecutive frames are stacked as a supervec-
tor to represent the exemplars in the source dictionary. In order
to reduce the computational cost, low-resolution features are
employed instead of high-resolution spectra with slightly per-
formance drop. In practice, Mel-scale filter bank energies were
employed as the low-resolution features.

The dictionary construction is based on the frame alignment
such as dynamic time warping (DTW). More details about the
dictionary construction process can be found in [12].

3. Proposed joint nonnegative matrix
factorization for voice conversion

The conventional nonnegative matrix factorization technique
uses either the low-resolution or the high-resolution features to
estimate the activation weights. The low-resolution features are
flexible in capturing the temporal contextual information with
low computational cost, while the high-resolution spectra con-
tain more spectral details, but the computational cost and mem-
ory occupation will increase considerably when contextual in-
formation is included.

To benefit from the flexibility of the low-resolution features
and spectral details of the high-resolution spectra, we propose
a joint nonnegative matrix factorization(Joint-NMF) technique
to model both the low- and the high-resolution features simulta-
neously. The Joint-NMF approach is briefly introduced in this
section.

Suppose for each source utterances, the high-resolution
spectrogram is represented using the high-resolution source dic-
tionary as shown in Eq. (2). Simultaneously, the low-resolution
spectrogram is generated from the low-resolution source dictio-
nary as

X(MEL) ≈ A(MEL)H, (6)

where X(MEL) is the low-resolution spectrogram correspond-
ing to X(DFT), A(MEL) is the low-resolution version of
A(DFT), and H is exactly the same as that in Eq. (2).

The proposed Joint-NMF with sparsity constraint estimates
the activation matrix H from both Eq. (2) and Eq. (6) simul-
taneously. The activation matrix is found by minimizing the
following objective function:

H = arg min
H≥0

α · d(X(DFT),A(DFT)H)

+ (1− α) · d(X(MEL),A(MEL)H)

+ λ‖H‖1, (7)

where α is the weighting factor to balance the low-resolution
and high-resolution KLD. The objection function in Eq. (7) can
be minimized by iteratively applying the following multiplica-



tive updating rule:

H← H⊗
(1− α)A(MEL)> X(MEL)

A(MEL)H
+ αA(DFT)> X(DFT)

A(DFT)H

(1− α)A(MEL) + αA(DFT) + λ
.

(8)
In the updating rule, if α = 0, only the low-resolution fea-
tures are used to estimate the activation weights; if α = 1, only
the high-resolution features are used; and any values between
0 and 1 are performing trade-off between low-resolution and
high-resolution features.

4. Experiments
To examine the performance of the proposed method, we con-
ducted experiments on VOICES database. Speech data from
two male speakers and two female speakers was employed, and
10 utterances from each speaker were randomly selected as a
training set and 20 utterances without overlapping with those in
the training set were used as an evaluation set. We conducted
four conversions including inter-gender and intra-gender pairs,
and reported the average performance over the four pairs.

To extract features, the speech signals were down-sampled
to 16 kHz. STRAIGHT [17] was employed to extract 513-order
spectral envelope and fundamental frequency (F0). The spectral
envelope was used as the high-resolution feature, while the 23-
order Mel-scale filter energies from the spectral envelope were
employed as the low-resolution feature. 24-order Mel-cepstral
coefficients (MCC) were then extracted from the spectral enve-
lope. Note that MCCs were only used for frame alignment and
calculating the spectral distortion.

4.1. Reference methods and setups

In the previous work [12], it had been shown that both NMF-
MEL and NMD-DFT achieved better performance in the lis-
tening test than the well-established ML-GMM system [7]. We
hence use NMF-MEL and NMF-DFT as the reference baselines
in this work. The reference methods and the setups are summa-
rized as follows.

• NMF-DFT: This is the exemplar-based method using
high-resolution spectra extracted by STRAIGHT in the
source dictionaries. the conventional nonnegative matrix
factorization (NMF) technique is adopted to find the ac-
tivation weights, as discussed in Section 2.

• NMF-MEL: This is the exemplar-based method using
the low-resolution Mel-scale filter bank energies in the
source dictionaries. Similar to NMF-DFT, the conven-
tional NMF technique is employed to estimate the acti-
vation weights.

• Joint-NMF: This is the exemplar-based method using
the proposed joint nonnegative matrix factorization tech-
nique to estimate the activation weights. Both low-
resolution and high-resolution features are used to find
the activation weights.

In the experiment, spectral envelopes were converted by above
conversion methods, while the source F0 was converted by
shifting the mean and normalizing the covariance to those of
the target.

In practice, for both NMF and joint-NMF algorithms, the
updating rules Eqs. (5) and (8) were repeated for 500 iterations,
and the activation matrix H was initialized to unity. The spar-
sity penalty parameter was set to 0.1 based on the experience of
previous work [12].

4.2. Objective evaluations

To evaluate the proposed method objectively, we adopted the
Mel-cepstral distortion (MCD), which is computed between the
generated and the matched reference target Mel-cepstra, as the
objective evaluation measure. In practice, Mel-cepstral coef-
ficients (MCCs) were used for MCD calculation. The MCD
value of a paired MCC features is calculated as MCD[dB] =

10
log 10

√
2
∑24

i=1(ci − cconvi ), where ci and cconvi are the ith co-
efficients of the matched target and generated MCC features,
respectively. As the involved methods did not generated MCCs
directly, we computed MCCs from the generated spectrograms
first and then calculated the MCD values. In this way, the MCD
values are comparable with other methods in the literature to
some degree. As the MCD value is based on independent fea-
ture pairs, we hence calculated the MCD values frame by frame
over all the matched feature pairs in the evaluation set, and re-
ported the mean of the MCD values. Noted that the lower MCD
values, the smaller spectral distortions we can expect.

4.2.1. Effect of multiple-frame exemplars

We first examined the effect of using multiple-frame exemplars
for both the low- and high-resolution features. A multiple-
frame exemplar spans several consecutive frames, and the num-
ber of frames is called the window size of an exemplar in this
work. Figure 1 presents the spectral distortion results of both
the NMF-DFT and the NMF-MEL methods as a function of the
window size of an exemplar. For the NMF-DFT method, only
the window size lower than 9 was adopted because of the heavy
computational cost for a longer window. It is observed that
as the window size increases, the spectral distortions decrease
from 5.66 dB and 5.77 dB to 5.44 dB and 5.54 dB of the NMF-
DFT and the NMF-MEL methods, respectively. When the win-
dow size is 7 or 9, the NMF-DFT achieves the lowest distortion,
that is 5.44 dB, while the NMF-MEL obtains the lowest distor-
tion, that is 5.54 dB, when the window size is 9. This observa-
tions confirm the effectiveness of the multiple-frame exemplars.
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Figure 1: Spectral distortion of NMF-DFT and NMF-MEL as a
function of the window size of an exemplar.

When the same window size is adopted, the NMF-DFT al-
ways achieves lower spectral distortion than the NMF-MEL.
We note that the NMF-DFT method uses high-resolution spec-
tra with spectral details, while the NMF-MEL method does not.
It implies that the spectral details are important in estimating
more accurate activations. We also note that in the NMF-DFT
method, the dimensionality of the spectra is 513, while in the



NMF-MEL method, the feature dimensionality is 23. Thus,
with the same window size, the memory usage of the NMF-DFT
method is about 22 times higher than the NMF-MEL method.
If the window size of the NMF-DFT is 1, and that of the NMF-
MEL is 9, the dimensionality of the exemplars in the NMF-
MEL method is about 2.5 times lower than the NMF-DFT meth-
ods.

4.2.2. Effect of joint nonnegative matrix factorization

We then checked the effect of the proposed joint nonnegative
matrix factorization (Joint-NMF). In this method, 9-frame ex-
emplars were used for the low-resolution features, while single-
frame exemplars were employed for the high-resolution spectra.
The reason is for computational efficiency, as multiple-frame
high-resolution exemplars require much heavier computation.
The spectral distortions as a function the weighting factor α are
presented in Figure 2. It is observed that as the weighting factor
α increases from 0, the spectral distortion decreases and reaches
the minimum, that is 5.43 dB, when α equals to 0.3. After that,
the spectral distortion increases along with the value of α. We
note that the Joint-NMF method achieves lower spectral distor-
tion than both the NMF-DFT and the NMF-MEL methods with
any window size in the exemplars. It confirms the effectiveness
of the proposed Joint-NMF over the conventional NMF-DFT
and NMF-MEL methods.
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Figure 2: The spectral distortion results as a function of the
weighting factor α

4.3. Subjective evaluations

We conducted listening tests to assess the performance in terms
of speech quality and speaker individuality of the proposed
method in comparison with the NMF-DFT and the NMF-MEL
methods. We adopted the Amazon Mechanical Turk (AMT), a
kind of crowdsourcing platform, to conduct the listening tests.
This platform had been used for speech quality assessment
in [18, 19, 20]. In the evaluation set, there were 4 conversion
pairs, each of which had 20 utterances, as a result there were
80 (4 × 20) generated utterances. Note that ten listeners were
involved in all the listening tests.

We first conducted a preference listening test for speech
quality. In the test, each subject listened to 20 utterances, which
were randomly selected from the 80 utterances in the evalua-
tion set. In addition, we randomly mixed three golden standard
speech pairs with the 20 testing utterances to exclude cheating
(randomly choose preference) as advised in [20].

During the preference listening tests, the converted speech
sample by the NMF-DFT/NMF-MEL and the Joint-NMF meth-
ods were first presented to the listeners in a random order. Then,

the listeners were asked to decide which one sounded more nat-
ural.

Figure 3 presents the preference results with 95 % for (a)
NMF-DFT vs Joint-NMF and (b) NMF-MEL vs Joint-NMF. It
is observed that the proposed Joint-NMF outperforms both the
NMF-DFT and the NMF-MEL methods.
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Figure 3: Preference results of speech quality with 95% confi-
dence intervals for the baseline methods and our proposed Joint-
NMF method: (a) NMF-DFT vs. Joint-NMF; and (b) NME-
MEL vs. Joint-NMF.

We then evaluated the speaker individuality through listen-
ing tests. Speaker identification listening tests were conducted.
In the test, Each listener first listened to a reference speech,
which is the sample produced by one conversion methods, and
then listened to samples A and B, corresponding to source and
target speech in a random order. To make the listeners focus
on the speech quality only, we used the same language content
for A and B, while different language content for the reference
speech. We performed the listening test for each method inde-
pendent to avoid bias on speech quality. The identification rates
are presented in Figure 4. It is observed that the three meth-
ods achieve similar performance in the sense that each method’s
identification rate is within the 95 % confidence interval of the
other methods.
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Figure 4: Speaker individuality identification rate with 95 %
confidence intervals for the NMF-DFT, NMF-MEL and Joint-
NMF methods.

5. Conclusions
In this paper, we proposed a joint nonnegative matrix factor-
ization technique for exemplar-based voice conversion. In this
technique, both multiple-frame low-resolution exemplars and
single-frame high-resolution exemplars are adopted to estimate
the activations. As such, the activations will benefit the tempo-
ral constraint from low-resolution features and spectral details
from high-resolution features with reduced computational cost
and memory usage. In practice, multiple-frame high-resolution
features can also be included in this framework, however, the
computational cost is very high. We will leave this in the future
work.
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