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Improved Prosody Generation by Maximizing Joint
Probability of State and Longer Units
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Abstract—The current state-of-the-art hidden Markov model
(HMM)-based text-to-speech (TTS) can produce highly intelli-
gible, synthesized speech with decent segmental quality. However,
its prosody, especially at phrase or sentence level, still tends to
be bland. This blandness is partially due to the fact that the
state-based HMM is inadequate in capturing global, hierarchical
suprasegmental information in speech signals. In this paper, to
improve the TTS prosody, longer units are first explicitly mod-
eled with appropriate parametric distributions. The resultant
models are then integrated with the state-based baseline models
in generating better prosody by maximizing the joint probability.
Experimental results in both Mandarin and English show consis-
tent improvements over our baseline system with only state-based
prosody model. The improvements are both objectively measur-
able and subjectively perceivable.

Index Terms—Discrete cosine transforms (DCTs), speech syn-
thesis, statistical distributions.

I. INTRODUCTION

I N recent years, corpus-driven speech synthesis system
trained as hidden Markov models (HMMs) has steadily

gained its popularity in text-to-speech (TTS) research and
application. In this framework, spectral envelope, fundamental
frequency (F0), and duration are modeled simultaneously by
the corresponding HMMs [1]. In synthesis, for a given text,
speech parameter trajectories are generated by the trained
HMMs in the maximum probability sense with the dynamic
(“delta”) feature constraints [2]. Speech waveform is finally
synthesized from the generated spectral and excitation param-
eters via source-filter based production model. Compared with
the unit selection based speech synthesis [3], [4], HMM-based
synthesis is trained in a more unified statistical criterion, i.e.,
maximum-likelihood (ML) principle in a parametric form. The
speech generated by the HMMs is fairly smooth and rarely
exhibits concatenation glitches which occur occasionally in
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conventional unit-selection synthesis. Characteristics of the
synthesized speech also can be easily controlled by trans-
forming the HMM parameters in a statistically tractable metric
like likelihood function, e.g., segmental and supra-segmental
parameters of the generated speech have been changed flexibly
[5], [6]. However, overly smoothed parameter trajectories due
to statistical averaging in HMM acoustic modeling still tend to
make synthesized speech sound not as lively as desired.

Many research attempts have been tried in order to improve
the performance of HMM-based speech synthesis [7]. To re-
duce the over-smoothing problem of trajectory and the resul-
tant degraded synthesized speech quality, a parameter genera-
tion algorithm was proposed by considering the global variance
(GV) of generated parameters in synthesis [8]. The probability
of GV is used to boost (restore) the dynamic range of gener-
ated speech trajectory. An extension which adopts a Gaussian
mixture model for characterizing the GV term was used to im-
prove the quality of an HMM-based polyglot speech synthe-
sizer [9]. To improve the acoustic modeling accuracy, a trajec-
tory model by imposing the explicit relationship between the
static and the dynamic features was proposed to improve the
acoustic model accuracy [10]. It can overcome the assumption
of conditional independence and piecewise statistics within a
state without any additional parameters. In [11], minimum gen-
eration error (MGE) was proposed as an alternative criterion in
HMM training. It adjusts ML-trained HMM parameters to mini-
mize the generation errors between synthesized and original pa-
rameter trajectories in the training data.

With the above improvements, the segmental quality of
synthesized speech is improved. However, synthesized speech
prosody, particularly at the phrase and sentence levels, still
tends to be somewhat bland. The relative ineffectiveness of GV
or MGE in producing lively prosody is due to the fact that a
state-based HMM is still inadequate in modeling a global, hier-
archical prosodic structure and contextual effects in longer units
like phrases or sentences. Furthermore, the decision tree-based
state tying, which is commonly used in HMM-based TTS, is
difficult to capture robustly the underlying additive structure
of the features [12]. To model the hierarchical and additive
structure of prosody, multi-layer models, in which each layer
represents one component of prosody, have been tried in speech
synthesis systems [13]–[19]. In some systems, different layers
of prosody are modeled and generated simultaneously. Gra-
dient tree boosting, which can iteratively build the regression
trees from modeling (prediction) residuals in the training and
output the sum of the regression trees in generation, was used
to model prosody [16], [17]. In other systems [15], [18], [19],
prosody models at different levels were first built separately and

1558-7916/$26.00 © 2010 IEEE



QIAN et al.: IMPROVED PROSODY GENERATION BY MAXIMIZING JOINT PROBABILITY OF STATE AND LONGER UNITS 1703

integrated together by maximizing their joint probabilities in
parameter generation. In addition to using multi-layer models,
the prosody models of long-term units can also be improved
with more appropriate parametric distributions. Gamma dis-
tribution, which can model random variables with positive
values, is more appropriate for modeling duration [20]–[22].
Discrete cosine transform (DCT), which can represent signal
in terms of a linear combination of cosine functions at different
frequencies, is a good parametric representation of smooth F0
trajectories [19], [23], [24].

In this paper, we investigate how to use gamma distribution
for modeling durations and DCT for parameterizing F0 of
longer units [18]. The longer-unit models are integrated with
state-level models in generation and their joint probability is
maximized [18]. The longer-unit model integration and the
joint probability optimization is similar to GV constraint [8]
and utterance length constraint [25] in parameter generation.

The rest of paper is organized as follows. A review on
prosody modeling and generation in conventional HMM-based
TTS system is given in Section II. In Section III, we inves-
tigate the statistical distributions of duration of longer units
and corresponding parametric representations of F0 contours.
The algorithm for prosody generation by maximizing the joint
probability of different units and corresponding experimental
results are presented in Sections IV and V, respectively. In
Section VI, a conclusion is given.

II. PROSODY MODELING AND GENERATION IN CONVENTIONAL

HMM-BASED TTS SYSTEM

In a conventional HMM-based TTS system, the state dura-
tion is explicitly modeled with a single Gaussian distribution
where parameters are estimated by using the state occupancy
counts in the Baum–Welch or Viterbi training procedure [25].
F0 features are modeled by multi-space probability distribution
HMM (MSD-HMM) [26], which can characterize stochastically
the piece-wise continuous F0 trajectory for both voiced and un-
voiced frames. MSD models two, discrete and continuous prob-
ability spaces for unvoiced regions and voiced F0 contours, re-
spectively. It models F0 in a stream separated from the spectral
feature stream.

In synthesis, the parameter trajectories are generated based on
the maximum-probability principle. The state duration is given
as the mean of the corresponding Gaussian distribution. F0 tra-
jectory is generated with the dynamic feature constraints. For
a given HMM model , an F0 vector of T components,

, is generated by maximizing
with respect to , where
is the weight matrix of static, delta, and delta-delta coefficients.
In our implementation, ,
and are used. If the state sequence

is given according to the state duration statistics,
we set

(1)

Fig. 1. Histograms for duration of different units. (a) 3-phone syllables;
(b) phone of “ao.”

and obtain the optimal solution by solving the weighted least
squares equations

(2)

where and

are covariance matrix and mean vector
of F0, respectively.

III. PROSODY MODELING FOR LONGER UNITS

Richer prosodic contexts can be used to capture the co-ar-
ticulation effects in longer speech units like words, phrases, or
sentences. However, in practice, limited by insufficient training
data, we usually have to cluster models of long and rich con-
texts into generalized ones in order to predict abundant, unseen
contexts in test. State tying via a clustered classification and
regression tree (CART) is therefore commonly used in conven-
tional HMM-based TTS. CART is an effective and efficiently
handling messy data, missing values, or predictor variables
measured in different scales, but with its own limitations, e.g.,
difficulty in capturing underlying additive structure of prosody
which is universally observed across different languages.
Multi-layered models seem to be more capable of modeling
the hierarchical structure of speech prosody. The decision
tree-based state tying is inappropriate to model hierarchical
prosodic structure at a sentence or phrase level. This is true
even when the high-level prosody questions are included in the
tree-building node splitting process. In this paper, we propose to
model the prosody of longer units explicitly and integrate them
with state-level model in parameter generation. Additionally,
we also investigate the problem of how to parameterize the
prosody of longer units with appropriate distributions.

A. Duration Modeling

In [22], we have compared gamma and Gaussian distribu-
tions in their model fitting behavior to the duration distributions
of longer units, like phone and syllables. The data is obtained
by forced aligning speech training data with corresponding
acoustic HMMs trained for TTS. Syllables are clustered into
groups according to their length in term of number of phones.
The distributions (histograms) of syllable and phone dura-
tions resemble a gamma distribution more than a Gaussian
counterpart as shown in Fig. 1(a) and (b), where the duration
histograms of 3-phone syllables and a diphthong “ao” of Eng-
lish are depicted, respectively.
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TABLE I
PERCENTAGE OF LEAF NODES WHICH GAMMA FITS BETTER

The distribution is further tested by Chi-Square statistics [27].
We test the distribution of durations in each leaf node of the
decision trees at state, phone and syllable levels with the Chi-
Square test of goodness-of-fit. Table I shows the percentage of
leaf nodes where gamma distributions fit better than Gaussians,
i.e., with a smaller value of statistics. The difference be-
tween Gaussian and gamma is more distinctive in English than
in Mandarin.

We use gamma distribution to model durations in the fol-
lowing form:

(3)

where . We use the method of moments
estimator1 to estimate the parameters of the gamma distribution.
The expected value and variance of the random variable in a
gamma distribution are and , where

and , , , are functions of and , the
mean and variance of duration variables in a leaf node.

B. F0 Modeling

In [24], we investigated the parametric representations of F0
contours. Two parametric forms, natural cubic spline (NCS)
and discrete cosine transform (DCT), are investigated for rep-
resenting F0 trajectories. A natural cubic spline is a piece-wise
cubic function defined in terms of the sample points called knots

, satisfying and its first
and second derivatives are continuous at all intermediate knots,

. The so-called a “natural” cubic spline has addi-
tional constraints that the second derivatives, at the first and last
knots are zero. The discrete cosine transform is linear and in-
vertible. It represents discrete samples in terms of a weighted
sum of cosine basis functions of different frequencies. The most
commonly used DCT is

(4)

1We use the method of moments for its simplicity.

Fig. 2. Fitting performances of NCS and DCT. (a) Fitting errors by 18 000
syllables. (b) An example of F0 fitting.

where are of length samples and represented
by coefficients of DCT, . DCT can be wrote in
matrix form , as shown in (5) at the bottom of the page.

Similarly, the inverse DCT is defined as

(6)
F0 curves extracted from 18 000 Mandarin syllables in a fe-

male continuous speech corpus are used to check the fitting per-
formances of NCS and DCT. Fig. 2(a) shows the fitting errors in
term of root mean square error (RMSE) with respect to different
number of DCT coefficients and NCS knots. As shown in the
figure, DCT outperforms NCS when they use the same number
of coefficients/knots. As the number of DCT coefficients and
NCS knots used increases, the contours represented by DCT
and NCS approach the original F0 contours. The fitting errors
in term of the number of coefficients show DCT is a more ef-
fective parametric representation of F0 curves. An example by
using seven DCT coefficients or NCS knots to approximate orig-
inal F0 contour is also shown in Fig. 2(b).

DCT uses a set of smooth orthogonal basis functions, where
the first coefficient is the mean (average) of input signal samples
and the rest coefficients are the weights for the corresponding
cosine functions at different frequencies, which can represent
the “shapes” of F0 contours. The orthogonality property of DCT
basis function also makes DCT computation efficient. There-
fore, we use DCT to parameterize the F0 contours at both syl-
lable and phrase levels. Context-dependent Gaussian pdfs are
used to model DCT coefficients at different levels.

IV. PROSODY GENERATION BY MAXIMIZING THE JOINT

PROBABILITY OF DIFFERENT UNITS

A. Duration Generation

Speech durations can be predicted more precisely if the du-
ration information of states and longer units like phone and syl-
lables are jointly considered. This idea was originally proposed

...
...

. . .
...

(5)
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by Wu [5], where the state duration is jointly estimated with the
phone duration. In this paper, we extend it further to syllable du-
ration. Also, we investigate the possibility of using gamma pdf
as a possible distribution function in addition to Gaussian pdf.
The probability of state durations is jointly maximized in con-
junction with the probabilities of phone and syllable durations.
For a given speech with syllables, the objective function of
duration sequence , , is defined as

(7)

subject to

(8)

(9)

where is the duration of state , phone , and syllable
, and is the corresponding probability density func-

tion. The phone and syllable pdfs, and , are simi-
larly defined. Parameters, and , are used to adjust the rel-
ative weights of phone and syllable durations probabilities, re-
spectively.

We use Gaussian and gamma distributions for modeling
phone and syllable durations as a refinement of the Gaussian
modeled state duration. Despite the fact that the histograms
of phone and syllable durations look more gamma like than
Gaussian, Gaussian is still used here for two reasons: 1)
Gaussian has been used for modeling duration information as
a default benchmark distribution; 2) Gaussian is chosen for
its mathematical tractability of its the first- and second-order
moment sufficient statistics. To maximize of Gaussian
distributions, we construct the Lagrangian and find its gradient:

(10)

(11)

It gives us

(12)

(13)

(14)

where

(15)

(16)

(17)

When we compare gamma and Gaussian distributions for
modeling state durations, we find the difference is rather small
as shown in Table I. By further checking the duration histograms
and the corresponding goodness of fit, we find the state duration
in terms of the number of frames per state ranges from 1 to 5, for
90% of states (five-state HMM phone model used in our system)
and the values of test statistics in gamma fit are close to those
in Gaussian fit in most cases. Therefore, we use gamma distribu-
tions to model phone and syllable durations only in (7). Similar
to maximize of Gaussian distributions by the method of
Lagrange multipliers (10), we have

(18)

(19)

(20)

where

(21)

(22)

(23)

(24)

and , , , denote the parameters of the gamma
distributions associated with and , respectively.

are defined the same as they are in the
Gaussian case. The optimization is performed by solving two
quadratic (19) and (20). Note that (20) has no closed-form solu-

tion; however,
can be well approximated by a linear function of derived
from Taylor series expansion, which leads to a solvable
quadratic equation

(25)
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where

and is the point where Taylor series expansion is performed
and in practice we use . Solving (19) and (25), we obtain the
solution of .

B. F0 Generation

Similar to the duration generation, the probability of the
F0 trajectory can be jointly maximized in conjunction with
the probabilities of syllable and phrase contours. A similar
approach was performed in [19], where DCT coefficients on
phone and syllable levels are modeled and the resultant models
are used together in parameter generation. However, the artifi-
cially interpolated F0 values [19] for unvoiced phones do not
reflect the actual F0 contours. In our approach, F0 contours at
higher levels, i.e., syllable and phrase, without interpolating the
unvoiced segments are adopted to improve F0 generation. The
log probability of F0 trajectory , , is defined as

(26)
with respect to

where is the state HMM, and are the HMMs on syl-
lable and phrase levels, respectively; is the state sequence
given by the duration model. Voiced/unvoiced decision for each
frame is given by the state-level MSD. is the DCT matrix for
F0 contour on voiced part of syllable. At the phrase level, DCT
matrix is performed on the F0 mean of each consistent syl-
lable. is the matrix to get the mean of F0s on each syllable; To
make F0 trajectory locally continuous, , the static, delta, and

delta-delta coefficient matrix, is used to calculate frame-level
dynamic feature; To capture the phrase intonation and make
neighboring syllable-level F0 contours globally continuous,
is the matrix to get the dynamic features of DCT first coeffi-
cient, which represents the mean of F0 curve on syllable; and

are the parameters to weight the probability of syllable-level
and phrase-level DCT models. When we set and ,
only state-level is considered. The relationship between and

in terms of three DCT coefficients can be arranged in matrix
form, as shown in (27) at the bottom of the page, where ,

, is the DCT matrix, i.e., (5), for the th syllable
with frames; , ; 0,1,2, is the th DCT
coefficient for the th syllable; and are the corresponding
dynamic features of first DCT coefficient.

To maximize the probability , we set

(28)

and obtain the solution as

(29)

(30)

(31)

where and are covariance matrix and mean vector of F0s
at state-level while , , , and are the corresponding
covariance matrices and mean vectors of DCT coefficients at
syllable and phrase levels.

...

...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .
...

...

(27)
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TABLE II
TRAINING, DEVELOPING, AND TESTING SETS (#SENTENCES)

OF THE TWO SPEECH CORPORA

V. EXPERIMENTS AND RESULTS

A. Experimental setup

Two phonetically and prosodically rich, speaker-dependent
continuous speech corpora, one in American English and
one in Mandarin Chinese, are used in our experiments. Each
corpus was recorded by a female, professional native speaker
in broadcast news style. Each database is divided into three
parts: training, developing, and testing sets. The corresponding
size of each set is given in number of sentences as shown in
Table II. The training set is used for training the prosody model.
Developing set is used to determine the appropriate weights

in (7) and (26). The testing set is used to measure the
performance of the new prosody generation algorithm.

Speech signals are sampled at 16 kHz. The spectral analysis
is performed by a 25-ms Hamming window, shifted every 5-ms.
Spectral envelopes are estimated by STRAIGHT [28] and
LPC modeled first and ultimately represented by 40th-order
LSPs and their dynamic counterparts. F0 is extracted on a
short-time basis by applying the robust algorithm for pitch
tracking (RAPT) [29] without manual corrections, then pass
them through a five-point medium filter to reduce spurious pitch
extraction errors, finally normalize the filtered pitch values with
the mean of sentence F0 contours. Five-state, left-to-right
HMM phone models are adopted in our baseline system.

State durations of the training data are automatically obtained
by forced alignments with the baseline models. Phone and syl-
lable durations are obtained by accumulating the durations of
the constituent states. Both gamma and Gaussian distributions
are used to model durations at phone and syllable levels.
State durations are still modeled by Gaussian distribution. F0
contours from voiced parts of syllable are used to F0 modeling
at syllable-level. To reflect true tone contours, no artificial F0
values are interpolated for unvoiced parts. Considering the
length of voiced part in some syllables can be less than 50
ms, seven DCT coefficients, delta and delta-delta features of
the first DCT coefficient of preceding, current and succeeding
syllables are used to represent syllable-level F0 contour. Our
previous analysis also show the DCT with seven coefficients
can achieve the balance between the fitting error and the parsi-
monious number of coefficients [24]. At the phrase-level, three
DCT coefficients are used to represent a contour that passes
through the F0 mean of each constituent syllable. At state-level,
no parametric representation is used for F0s.

Rich phonetic and prosodic contexts are used as a question
set in growing decision trees. They include quin-phone; stress,
TOBI labels, continuity of F0 contour on contextual quin-syl-
lable; POS on contextual tri-word; the position of phone,
syllable and word in phrase and sentence; and the length of
syllable, word, and phrase in number of phone, syllable, and
word for both Mandarin and English. The same question set is

TABLE III
NUMBER OF LEAF NODES IN THE DECISION TREES

used for prosody modeling at different levels. The questions for
splitting the nodes of tree are automatically selected in the ML
sense. Minimum description length (MDL) criterion [30] for
balancing model complexity and training data size is used as a
stopping criterion for different level units clustering in decision
tree growing. We set MDL factor equal to one in decision
tree growing, the corresponding numbers of leaf nodes in the
decision trees: state, phone, and syllable for duration models
and state, syllable, and phrase for F0 models, are shown in
Table III. Although the number of training sentences in Man-
darin is larger than that in English, the length of each sentence
in Mandarin is much shorter than that in English and as a result
the number of leaf nodes in Mandarin is much smaller than that
in English.

For a given text sequence to synthesize, duration and F0 are
generated by our proposed method as mentioned in Section IV.
F0 is further multiplied by the mean of F0s in training data for
synthesis since it is normalized during models training. Spectral
parameter (LSP) trajectories are first generated from trained
HMMs by the conventional approach, then formant sharpened
based on LSP frequencies [31] to reduce the over-smoothing
problem of HMMs and the resultant degraded synthesized
speech quality.

B. Evaluation Results and Analysis

Objective and subjective measures are used to evaluate the
performance of the proposed approach in testing data. Since the
predicted phone durations of generated utterances are in gen-
eral not the same as those of the original speech, we first mea-
sure the root mean squared error (RMSE) of phone and syllable
durations between original and synthesized speech. F0 distor-
tions are then measured by RMSE and the correlation coeffi-
cient between the original and synthesized F0 trajectories over
all aligned voiced frames where the state durations of the orig-
inal speech (obtained by forced alignment) are used for speech
generation. Subjectively, a preference test is conducted to com-
pare speech sentence pairs synthesized by our approach and the
baseline system. The duration and F0 in the baseline system are
from the state-level model.

To find the optimal and values for maximizing the joint
probabilities of state and longer unit prosody, we use the de-
velopment set via a grid search in the two dimensional space
of . The grid search for finding the best values in
gamma distribution of duration is shown in Fig. 3. The best

values for integrating gamma distributions of phone and
syllable are (0.5, 0.3) and (0.5, 2.1) for English and Mandarin,
respectively. While RMSE and correlation are two common
metrics for evaluating F0 model performance objectively, we
use correlation as the sole criterion in the grid search since cor-
relation is more relevant to the subjective quality of generated
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Fig. 3. Full grid search of optimal ��� �� values for integrating of the gamma
distributions of phone and syllable durations. The best values are marked with
squares. (a) English. (b) Mandarin.

Fig. 4. Full grid search of optimal ��� �� values for integrating DCT F0 models
of syllables and phrases. The best values are marked with squares. (a) English.
(b) Mandarin.

F0. The optimal values search for integrating DCT syl-
lable and phrase models is shown in Fig. 4 and the resultant
values are (80, 2) and (4, 6) for English and Mandarin, respec-
tively. When we set or , only phone or syllable
is integrated to the duration model, and only syllable or phrase
is integrated to the F0 model. Figs. 3 and 4 also show that the
and values are sensitive to the performance. The and dis-
tributions are fairly speaker and language-dependent since the
dynamic ranges of duration and F0 vary from one speaker (lan-
guage) to another.

The RMSE results of phone and syllable durations predicted
by the duration models of state (baseline) and integrated with
duration models of phone and syllable are shown in Table IV,
where the RMSE results of syllable duration are listed in
brackets. In our experiments, pause durations are not modified
by integrating higher level model and excluded in the calcu-
lation of the RMSE results since their dynamic ranges are
too large. Table IV shows that integrating phone and syllable
duration models can reduce phone RMSE of 23.46 ms of Eng-
lish baseline to 21.35 ms, and 30.1 ms of Mandarin baseline
to 26.78 ms, i.e., relative improvements of 9.9% and 11.1%
are obtained for English and Mandarin corpora, respectively.
Similar relative improvements are obtained on most RMSE
results of syllable duration except Mandarin syllable. The syl-
lable duration RMSE for the Mandarin corpus is reduced from
55.34 ms to 36.94 ms, i.e., a relative improvement of 33.2%,
obtained by incorporating syllable gamma duration models into
state+phone duration models. Mandarin is known as a syllabi-
cally paced tonal language. Compared with English, Mandarin
has a simpler and more restricted syllabic structure and the
syllable durations are rather stable, e.g., 4 or 5 syllables per
second generally. Therefore, the syllable durations can be well

TABLE IV
RMSE FOR BASELINE AND IMPROVED DURATION GENERATION

WITH DURATION MODELS OF PHONE AND SYLLABLE

TABLE V
RMSE AND CORRELATION OF F0 FOR BASELINE AND IMPROVED F0
GENERATION WITH THE MODELS ON SYLLABLE AND PHRASE LEVELS

regulated by the syllable level duration models. We cannot tell
which distribution, gamma or Gaussian, performs better from
the Table IV. By further checking the goodness of fit shown
in Table I, we find that although more leaf nodes fit gamma
better than Gaussian, some bad cases which are much farther
away from gamma than Gaussian are observed, i.e., the values
of test statistics in bad cases of gamma fit are much larger
than those in Gaussian fit. This might be the possible reason
why gamma distribution underperforms Gaussian distribution
in some RMSE results in Table IV.

Table V shows the RMSE and correlation coefficients be-
tween original and generated F0 trajectories for baseline and in-
tegrated with models at both syllable and phrase levels. RMSE
improvements of 0.87 and 0.67 Hz are obtained in English and
Mandarin, respectively. The correlation coefficient is improved
from 0.70 to 0.75 for English and 0.91 to 0.92 for Mandarin.
A high correlation coefficient of 0.91 achieved by the baseline
Mandarin TTS prevents it from being much further improved
significantly. This may due to the fact that Mandarin is a tonal
language and the contextual HMM with lexical tone label in
training regulates well the F0 contour movement in F0 gener-
ation, even in the baseline Mandarin system.

The improved prosody generation on both duration and F0 is
further evaluated by a perceptual test. 50 Mandarin and 50 Eng-
lish sentences, which are selected from the testing set sentences
and synthesized by the baseline and the improved prosody gen-
erations, are evaluated in an AB preference test participated by
six subjects. There are three preference choices: 1) the former
is better; 2) the latter is better; 3) no preference (The difference
between the paired sentences can not be perceived or can be
perceived but difficult to choose which one is better). The pref-
erence scores between the baseline and the improved systems
consisting of improved duration modeling, improved F0 mod-
eling and improved both are shown in Fig. 5. It shows that the
speech synthesized by the improved systems is preferred than
the baseline subjectively. The system with both duration and F0
modeling improvement is the best. Its preference score (39%) is
significantly higher than the baseline system (20%) (A signifi-
cance test: , CI ). While the per-
ception difference between baseline and improved system with
either improved duration or F0 is not distinctive.
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Fig. 5. Preference scores of the baseline and the improved systems with the
models of longer units.

Fig. 6. Scatter diagram of phone RMSE pairs predicted by baseline and re-
fined model by phone and syllable gamma distributions. (a) All English phones.
(b) All Mandarin phones.

Fig. 7. Shapes of syllable-level F0 contours. (a) English syllable. (b) Mandarin
Syllable.

Fig. 6 shows the scattered diagrams of RMSE pairs of phone
durations predicted by the baseline and the refined model,
plotted for each individual phone in English and Mandarin.
Note that only for a few phones, predicted phone duration is
not improved by the refined model.

To analyze the generated F0 contours at both syllable and
phrase levels, we cluster DCT coefficients in terms of TOBI
labels for English, and tone types and the positions of current
phrase in sentence for Mandarin. At syllable level, Mandarin has
four types of tones, indicated by their numerical labels, English
has three types of pitch accents: L , L H , and H , and two
types of final boundary tones: L% and H%. At phrase level, F0
contours are classified by the position in sentence: first, inner,
and last, for Mandarin since the majority of sentences are declar-
ative, and the phrasal tones: L- and H- for English. The corre-
sponding shapes of F0 contours on different levels are shown in
Figs. 7 and 8. They are consistent with TOBI labeling conven-
tion and the general contour shapes observed by linguistics.

VI. CONCLUSION

We improve the prosody generation module in the conven-
tional HMM-based TTS. Longer units of prosody are param-

Fig. 8. Shapes of phrase-level F0 contours. (a) ENglish phrase. (b) Mandarin
phrase.

eterized and modeled more properly. The prosody models of
longer units are integrated into the baseline system to improve
the prosody generation by maximizing the joint probability of
state and longer units. The proposed prosody generation im-
proves prosody prediction: the RMSE of syllable durations are
reduced by 5.5 and 19.0 ms and the RMSE of F0 trajectories are
reduced by 0.87 and 0.67 Hz, in synthesized English and Man-
darin, respectively. The synthesized speech generated by the im-
proved prosody generation module also preferably perceived in
subjective listening test, compared with that of baseline.
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