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Background

• A speaker-dependent TTS system requires several hours recordings in studio

–It is expensive to collect


• Adaptation for speech synthesis

–Create a new voice using minimal data, for example 1 minute speech
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Related work

• Speaker adaptation for statistical parametric speech synthesis

–MLLR, CMLLR, MAP, MAPLR, CSMAPLR, etc


• Voice conversion for unit-selection concatenation speech synthesis
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DNN-based speech synthesis

• Mapping linguistic features to vocoder parameters using a deep neural 
network

–Outperform HMM-based speech synthesis in terms of naturalness
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Proposed adaptation framework 
for DNN-based speech synthesis
• Performing speaker adaptation at three different levels
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Adaptation framework: i-vector

• I-vector extraction


–m is the mean supervector of a speaker-independent universal 
background model (UBM) 

–s is the mean supervector of the speaker-dependent GMM model 

(adapted from the UBM)

–T is the total variability matrix estimated on the background data


–i is the speaker identity vector, also called the i-vector
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s ⇡ m+Ti, i ⇠ N (0, I)

Dehak, Najim, Patrick Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet. "Front-end factor analysis for speaker 
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Adaptation framework: LHUC

• Learning hidden unit contribution


–      is the activations of the      hidden layer

–            is an element-wise function to constrain the range of       

–       is the weight matrix of the     hidden layer


–setting               = 1, the hidden activation will become the normal one
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Adaptation framework: feature 
space adaptation

• Feature transformation: Transform the output of DNN using a linear 
transformation


– A is a linear transformation matrix
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y = F(ŷ)y = F(ŷ)A
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Adaptation framework: combination of 
individual techniques

–As each adaptation method is applied at different level, they can easily 
combined
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Experimental setups
• Corpus

–Voice bank database: 96 speakers (41 male, 55 female)


• To build speaker-independent average DNN model

• Sampling rate: 48 kHz

• Each speaker has around 300 utterances


–Two target speakers (one male, one female)

• 10 utterances for adaptation, 70 development, 72 testing


• Vocoder parameters (extracted by STRAIGHT)

–60-D Mel-Cepstral Coefficients with delta, delta-delta

–25-D Band Aperiodicities (BAP) with delta, delta-delta

–1-D fundamental frequency (F0) (linearly interpolated) with delta, delta-delta

–1-D voiced/unvoiced binary feature

–In total 259 dimension
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Experimental setups

• Neural network architecture

–6 hidden layers, each layer has 1536 hidden units

–Tangent activation function for hidden layers, linear activation function for 

output layer

• Data normalisation

–Vocoder parameters: speaker-dependent normalisation to zero mean and unit 

variance

–Linguistic features: normalised to [0.01 0.99] on the whole database
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Experimental setups (cont’d)

• Baseline HMM system

–The open-source HTS toolkit, and the best the setting on our dataset

–CSMAPLR adaptation algorithm


• Adaptation 

–i-vector


• background model: voice bank database

• i-vector dimension: 32

• Toolkit: ALIZE


–LHUC

• applied to all the hidden layers


–Feature transformation

• Joint density Gaussian mixture model based voice conversion
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Subjective results — DNN 
adaptation methods
• Naturalness

– MSHRA (MUltiple Stimuli with Hidden Reference and Anchor) test

– 30 listeners
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Subjective results — DNN 
adaptation methods
• Similarity

- 30 listeners
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Subjective results — DNN vs 
HMM

• Preference test

–30 native English speakers
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Conclusions

• Adaptation for DNN-based synthesis can be applied at three different levels


• The performance of DNN adaptation is significantly better than HMM 
adaptation


• Future work

–Speaker adaptive training for the average DNN model

–Joint optimisation of adaptation at three different levels
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All the samples used in the listening tests are available at:  
http://dx.doi.org/10.7488/ds/259

http://dx.doi.org/10.7488/ds/259

